

Report of the 2015

Herring Age Reading Exchange

Coordination and analysis: Julie Coad Davies (DTU AQUA) R-script: Line Giovanna Buhl Pinna and Karin Hüssy (DTU AQUA)

Technical University of Denmark National Institute of Aquatic Resources Charlottenlund Slot Jægersborg Allé 1 2920 Charlottenlund Tlf.35 88 33 00Fax35 88 33 33

www.aqua.dtu.dk

Contents

Executive Summary
Introduction 4
Participants 4
Samples
Methods
Analysis
Results 8
North Sea Exchange
Celtic Sea Exchange
Irish Sea Exchange 21
VIa (N and S) Exchange
Conclusion
Annex 1 North Sea
Annex 2 Celtic Sea
Annex 3 Irish Sea
Annex 4 VIa (N and S)

Executive Summary

The PGCCDBS (2014) proposed a full scale herring otolith exchange for the Atlantic and Baltic Seas to take place in 2015. The current exchange was initiated in 2015 and followed a small calibration exercise where only 3 institutes participated in reading otoliths from the North Sea and Irish Sea areas. It includes samples from the North Sea, Celtic Sea, Irish Sea and VIa (North and South) areas and was completed by 13 readers from 9 institutes. The aim of this combined exchange was to assess the accuracy of the age readings i.e. the proximity of the estimated ages to the modal age which is determined by an index of average percentage error (APE), percentage agreement and relative bias values, and to assess the precision i.e. the reproducibility of age estimates between readers which is determined using the coefficients of variation (CV). In addition, growth curves were compiled based on the distance data between annotations made on the otolith images hosted on the online annotation tool, WebGR. The growth curves allow for detailed examination of where the main problems with age interpretation are. Finally, Age Error Matrices were compiled for each area; these provide a measure of accuracy of the age readings and will be provided to HAWG 2016.

For the North Sea area (based on expert readers only) the overall APE is 14.8%. Bias in age estimates were found between the German and Dutch readers who are overestimating the ages in comparison to the modal age. Overall CV was 21.1% and overall percentage agreement 73.6%.

For the Celtic Sea area (based on expert readers only) the overall APE is 14.2%. Bias in age estimates were found between the German and Dutch readers who are overestimating the ages in comparison to the modal age and to a lesser extent the Northern Ireland reader who is underestimating the ages in comparison to the modal age. Overall CV was 19.6 % and overall percentage agreement 75.2%.

For the Irish Sea area (based on expert readers only) the overall APE is 11.6%. Bias in age estimates were found between the German and Dutch readers who are overestimating the ages in comparison to the modal age and to a lesser extent the Northern Ireland reader and one reader from Norway who are underestimating the ages in comparison to the modal age. Overall CV was 16 % and overall percentage agreement 77.7%.

For the West of Scotland Sea area (based on expert readers only) the overall APE is 13.6%. Bias in age estimates were found between the German and Dutch readers and to a lesser extent two readers from Norway who are overestimating the ages in comparison to the modal age. Overall CV was 18.8 % and overall percentage agreement 69.1%.

The combined results show that 3 of the readers (2 of which are experts) are showing significant bias in their age readings. This maybe partly due to the differences which arise in age estimates when fish are aged in terms of "rings" versus "years". The third reader is repeatedly omitting the first winter ring in the count of age. The age error matrices show that, in most cases, ages are overestimated my more than one year and this indicates that there is more than one ageing problem. The results of the growth curve analyses confirm this but annotation standardisation problems are apparent which can confound the results. Bias tests and plots give a more detailed description of reader performance.

Introduction

The PGCCDBS (2014) proposed a full scale herring otolith exchange for the Atlantic and Baltic Seas to take place in 2015. Prior to the full scale exchange taking place a small calibration exercise was initiated by Denmark's National Institute of Aquatic Resources and AFBI Northern Ireland in 2014 to test for age reading problems, this was done in preparation for HAWG 2015 and included otolith samples from areas IVa, IVb, IVc and VIIa. The level of accuracy of the participants' age readings compared to modal age is indicated by percentage agreement (% agreement), (a high value suggests good agreement). The level of precision i.e. the reproducibility of age estimates is indicated the coefficient of variation (CV), (a low value indicates a high level of reproducibility). The primary age readers from Denmark, Northern Ireland and Scotland participated. For both areas the % agreement was low and the CV high: North Sea - 78.8% agreement and CV of 15.5% and Irish Sea - 86.7% agreement and CV of 7.4%. In both cases the 2 experienced readers (Denmark and Scotland) had a high level of agreement but the inexperienced reader (Northern Ireland) was not in agreement. It was not possible to complete the growth curve analysis as not all readers annotated the images correctly. The aim of the current exercises is to expand on the 2014 exercise, both in terms of number of participants and areas covered (North Sea, Irish Sea, Celtic Sea and VIa West of Scotland) and to provide a more thorough analysis, including growth zone analysis and compilation of age error matrices for HAWG 2016. Preparations are underway for the Baltic Sea exchange.

Participants

Reader	Name	Country	Institute and address	e-mail	Experience
1	Stina	Denmark	DTU Aqua National	<u>sb@aqua.dtu.dk</u>	Expert
DNK1	Bilstrup		Institute of Aquatic		
	Stenersen		Resources, Jægersborg		
	Hansen		Alle 1, 2920 Denmark.		
3	Anne Liv	Norway	Institute of Marine	anne.liv.johnsen@imr.no	Expert
NOR2	Johnsen		Research, Institute of		
			Marine Research, PO		
			Box 1870, N-5817		
			Bergen, Norway		
4	Eilert	Norway	Institute of Marine	eilert.hermansen@imr.no	Expert
NOR3	Hermansen		Research, Institute of		
			Marine Research, PO		
			Box 1870, N-5817		
			Bergen, Norway		
5	Jan de	Norway	Institute of Marine	jan.de.lange@imr.no	Expert
NOR4	Lange		Research, Institute of		
			Marine Research, PO		
			Box 1870, N-5817		
			Bergen, Norway		

Table 1. List of participants

6	Bjãrn vidar	Norway	Institute of Marine	bjoern.vidar.svendsen@imr.no	Expert
NOR5	Svendsen		Research, Institute of		
			Marine Research, PO		
			Box 1870, N-5817		
			Bergen, Norway		
8	Louise	United	CEFAS, Pakefield	louise.cox@cefas.co.uk	Intermediate:
GBR2	Straker Cox	Kingdom	Road, Lowestoft,		4 yrs
			Suffolk, NR33 7QZ,		
0	Japo Mills	United	UK Marina Scotland	Japa Mills@scotland.gsi.gov.uk	Export
GBB3	Jane Willis	Kingdom	Science	Jane. Willis@Scotland.gsl.gov.uk	Lypert
GBR3		Kinguoin	275 Victoria Road		
			Abordoon AP11 ODP		
			Scotland		
10	lan	United	The Agri-Food &	lan McCausland@afhini.gov.uk	Intermediate
GBR1	McCausland	Kingdom	Riosciences Institute		memeulate
CDUT	wiccausianu	Kinguoin	ΔFRI		
			18a Newforge Lane		
			BT9 5PX Belfast		
			Northern Ireland		
11	Deirdre	Ireland	Marine Institute	deirdre lynch@marine ie	Expert
IRI 1	Lynch		Rinville Oranmore		LAPCIC
	Lynen		Co Galway Ireland		
13	lan	Netherlands	IMARES PO Box 68	ian heintema@wur nl	Expert
	Beintema	Nethenanas	1970 AB limuiden The		Expert
NEDI	Demterna		Netherlands		
14	Gertrud	Germany	Thünen-Institute of	gertrud delfs@ti bund de	Expert
DFU1	Delfs	Cermany	Sea Fisheries	<u>gertradidens@inbartaide</u>	Expert
DLUI	Dens		Palmaille 9 D- 22767		
			Hamburg, Germany		
15	Jean Louis	France	IFREMER. Centre	Jean.Louis.Dufour@ifremer.fr	Expert
FRA1	Dufour		Manche-mer du Nord.		
			Laboratoire		
			Ressources		
			Halieutiques 150. quai		
			Gambetta, BP 699 62		
			321 Boulogne sur mer.		
			France		
16	Merete	Norway	Institute of Marine	merete.kvalsund@imr.no	Trainee
NOR1	Kvalsund		Research, Institute of		
			Marine Research, PO		
			Box 1870, N-5817		
			Bergen, Norway		

Samples

In the early planning phase of the exchange a discussion between the stock co-ordinators lead to the decision that the exchange sets should include only autumn and winter spawning stocks to avoid confusion with stocks which have a different birth date. It was anticipated that the exchange sets would comprise of pairs of unmounted otoliths. Many of the participating institutes mount their otoliths in histokitt or resin which can cause problems when the otoliths are being digitised. Also, in many cases only single otoliths are available. Every effort was used to include pairs of unmounted otoliths in order to optimise the quality of the exchange sets made available to the readers. The exchange consisted of 4 sets of otoliths, one for each of the following areas: North Sea, Irish Sea, Celtic Sea and VIa (N and S), with 50 images per area.

Otoliths from the North Sea (IVa and IVb) were provided by DTU Aqua (Table 2). These had not been mounted in resin or histokitt.

North	Jan '13	Feb '13	Jun '14	Jul'13	Aug '13	Aug '14	Sep '13	Oct '13	Nov '13	Dec '13	Tatal
Sea	Q.1	Q.1	Q.2	Q.3	Q.3	Q.3	Q.3	Q.4	Q.4	Q.4	Total
IVa	3		7			4		7	2	4	27
IVb	4	3		2	11		1			2	23
Total	7	3	7	2	11	4	1	7	2	6	50

Table 2. Sample overview for the North Sea

Otoliths from the Celtic Sea (VIIg, VIIj and VIIaS) were provided by the Marine Institute Ireland (Table 3). A large number of samples were originally chosen for the exchange. As many of these were mounted in resin on black slides they were not suitable for digitisation. All of the samples were visually inspected and the best quality otoliths were used for the exchange.

Coltic Soc	Sep '11	Oct '11	Oct '13	Nov '11	Nov '14	Dec '11	Dec '13	Total
Centre Sea	Q.3	Q.4	Q.4	Q.4	Q.4	Q.4	Q.4	TOLAI
VIIaS				1		5	8	14
VIIg	10	5	2		10			27
VIIj		9						9
Total	10	14	2	1	10	5	8	50

Table 3. Sample overview for the Celtic Sea

Otoliths from the Irish Sea (VIIa) were provided by AFBI Northern Ireland (Table 4). All of the otoliths had been mounted in resin on black slides. All of the samples were visually inspected and the best quality otoliths were used for the exchange.

Table 4. Sample overview for the Irish Sea

Irish	Mar '11	Sep '06	Sep '11	Oct '10	Total
Sea	Q.1	Q.3	Q.3	Q.4	Total
VIIa	12	9	11	18	50
Total	12	9	11	18	50

Otoliths from the West of Scotland (VIaN and VIaS) were provided by MARLAB Scotland (Table 5). These had not been mounted in resin or histokitt.

		,				
VIa (N and S)	Feb '15	Mar '15	Aug '14	Sep '14	Nov '14	Total
	Q.1	Q.1	Q.3	Q.3	Q.4	
VIaN	6	1	6	5	7	25
VIaS	16				9	25
Total	22	1	6	5	16	50

Table 5. Sample overview for VIa (N and S)

Methods

All otolith were sent to DTU Aqua to ensure that a standard set up and magnification was used for all images. Images of whole otoliths immersed in alcohol were taken on a black background under reflected light using a Leica MZ6 stereo microscope (magnification x2), Leica DFC320 camera and the corresponding Leica Application Software V.4.5. A total of 200 otoliths (50 per area) were digitised and made available on WebGR for annotation.

Prior to the exercise a Skype meeting was held where all readers and national age reader co-ordinators were invited to attend. A demonstration of WebGR plus a demonstration of how the readers were required to annotate the images was given. Readers were also provided with written instructions and an image example of which axis to annotate. They were asked to annotate the nucleus and the start of each translucent zone and give a final estimation of age. The exercises were run as blind tests where the readers could not see the annotations of the other readers.

Four separate calibration exercises were made available on WebGR: North Sea Herring, Irish Sea Herring, Celtic Sea Herring and VIa Herring. All readers will be required to read the otoliths from all areas. Readers were provided with information on the capture date, area and total length (TL).

Analysis

Each of the 4 calibration exercises were analysed separately.

Age data:

An R script was developed which follows the traditional analyses of agreement between readers as used in the Guus Eltink spreadsheet (Eltink, A.T.G.W. 2000):

- average % Agreement (nmodal age/ntotal*100)
- coefficient of variation (CV) (Standard deviation/average*100)
- bias tests and plots

In addition an index of average percentage error (APE) was calculated based on the method outlined by Beamish & Fournier (1981). This method is not independent of fish age and thus provides a better estimate of precision. As the calculations of both CV and APE poses problems if the mean age is close to 0, all observations for which modal age was 0 were omitted from the CV and APE calculations. Inter-reader bias was tested using the Friedman rank sum test followed by a post-hoc pairwise Wilcoxon test for multiple comparisons.

Age error matrices were produced following procedures outlined by WKSABCAL (2014) where the matrix shows the proportion of each modal age mis-aged as other ages. The sum of each row is 1, equal to 100%. For each area all readers were included.

Growth data:

WebGR provides a measure of distance between the annotations made by the readers and thus provides a measure of growth increment width. The "alldistances" dataset from WebGR was used to establish growth curves for each fish and for each reader. For each set of annotations belonging to a single fish and reader, the distance between two consecutive annotations was added to the sum of the previous distances and the distances were cumulated from centre point to the outermost annotated winter ring. These growth curves were analysed using Linear Mixed Effects Models (LMEM).

For all 4 exchanges the model that best fits the data is a model with log (winter ring) and reader as fixed effects and individual images as random effects. The results show significant differences (p < 0.05) in the intercept of the LMEM indicating there are differences in the interpretation of the first winter ring and significant differences (p < 0.05) in the slope of the LMEM indicating there are differences in the interpretation of the following winter rings. A post-hoc Tukey Contrasts test for multiple pairwise comparisons followed to identify inter reader differences.

While the age data provides information on whether the age readers agree in age estimates, the growth data can identify specifically where the problems are, i.e. differences in intercept only are attributable to problems with the first winter ring, while differences in slope indicate a general inconsistency in structures used for age estimation.

Results

North Sea Exchange

Age data:

When all of the age readers are included the overall percentage agreement is 70.3% with a CV of 24.2%. Problems are already apparent at fish age 0 where the % agreement is only 77% due to three of the readers (NOR1, NLD1 and DEU1) assigning an age of 1 to these fish. NLD1 and DEU1 appear to add an extra age without making an annotation whereas NOR1 marks an extra ring at the edge. In general, the level of agreement decreases as fish age increases (Table 2a). Fish IV_35 (Fig 1a) has the highest level of agreement

at 92% with only DEU1 reading age 5 when the modal age is age 4. The lowest level of agreement is 38% where ages ranging from 8 to 13 are assigned to a fish with modal age 9. The overall CV for modal age 1 is very high at 45%, as only 6 of the 13 readers have a CV of 0. CV decreases to the lowest level of 9.3 % for modal age 5 before increasing again. When only the "expert" readers are included in these calculations the overall % agreement increases slightly to 73.6% and the CV decreases to 21.1%. The overall index of average percentage error (APE) is 17.2% and when calculated based on only the "expert" readers this improves to 14.8%.

Figure 1a. Herr_IV_35. Modal age 4, capture date 04/09/2013, % agreement 92% and CV 7%

Table 1a shows the age composition based on the estimated ages for all readers. Tables 2a, 3a and 4a show the % Agreement, CV and relative bias based on modal age for all readers.

	1_	3_	4_	5_	6_	8_	9_	10_	11_	13_	14_	15_	16_	
	DNK	NOR	NOR	NOR	NOR	GBR	GBR	GBR	IRL	NLD	DEU	FRA	NOR	
Age	1	2	3	4	5	2	3	1	1	1	1	1	1	Total
0	3	3	3	3	3	3	3	3	4	2	0	3	0	33
1	11	8	11	11	11	9	11	11	9	4	3	9	9	117
2	10	10	9	8	9	11	9	7	8	6	13	11	10	121
3	8	10	9	7	8	10	9	3	10	17	7	9	7	114
4	5	4	4	7	4	5	5	12	7	3	9	5	4	74
5	3	5	3	4	3	4	3	7	2	5	5	2	8	54
6	4	3	5	4	5	2	4	2	4	6	3	5	2	49
7	3	4	2	2	3	2	3	2	2	4	4	3	4	38
8	1	1	1	3	0	0	1	1	4	1	3	0	3	19
9	2	1	2	1	2	3	1	0	0	1	1	3	3	20
10	0	0	1	0	1	0	1	1	0	0	0	0	0	4
11	0	0	0	0	0	0	0	0	0	0	1	0	0	1
12	0	0	0	0	0	0	0	1	0	0	0	0	0	1
13	0	0	0	0	0	0	0	0	0	0	1	0	0	1
All	50	49	50	50	49	49	50	50	50	49	50	50	50	646

Table 1a. Age composition based on all readers in the North Sea exchange

Table 2a. Percentage Agreement based on all readers in the North Sea exchange

	1_	3_	4_	5_	6_	8_	9_	10_	11_	13_	14_	15_	16_	
Modal	DNK	NOR	NOR	NOR	NOR	GBR	GBR	GBR	IRL	NLD	DEU	FRA	NOR	l
Age	1	2	3	4	5	2	3	1	1	1	1	1	1	All
0	100	100	100	100	100	100	100	100	100	0	0	100	0	77
1	100	80	100	100	100	80	100	80	80	11	0	90	60	76
2	89	100	89	89	89	89	89	44	78	11	33	100	89	76
3	80	100	90	70	80	90	90	10	80	60	10	90	60	70
4	100	80	80	80	75	80	100	80	60	20	0	100	40	69
5	100	100	100	100	100	50	100	50	0	50	50	100	100	77
6	80	60	100	80	100	25	80	0	60	60	20	100	40	63
7	67	100	67	67	100	67	100	0	33	33	0	100	67	62
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	67	33	67	33	67	100	33	0	0	33	33	100	67	49
Weigh ted														
mean	88.1	85.7	90.1	82	89.8	79.6	90	41.9	66	30.5	13.9	96	60.1	70.3

Modal age	1_ DNK 1	3_ NOR 2	4_ NOR 3	5_ NOR 4	6_ NOR 5	8_ GBR 2	9_ GBR 3	10_ GBR 1	11_ IRL 1	13_ NLD 1	14_D EU 1	15_ FRA 1	16_ NOR 1	ALL
0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	0	35	0	0	0	35	0	35	47	49	0	29	73	45
2	18	0	18	18	18	18	18	41	25	12	19	0	43	24.1
3	15	0	11	15	16	11	11	27	13	42	8	11	23	20.8
4	0	11	11	11	12	12	0	37	34	31	9	0	38	19.1
5	0	0	0	0	0	16	0	16	0	13	13	0	0	9.3
6	8	10	0	8	0	10	8	45	10	9	7	0	12	14.3
7	8	0	8	8	0	9	0	11	14	17	0	0	8	11.3
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	14	13	6	7	6	0	11	33	0	20	18	0	7	13.9
Weigh ted Mean	8.4	10.1	7.4	9	7.9	15.9	6.9	31.3	21.7	26.7	8.2	8	32.8	24.2

Table 3a. Coefficient of Variation (CV) for all readers in the North Sea exchange

Table 4a. Relative Bias values for all readers in the North Sea (red values indicate negative values and black indicated positive values)

	1_ DNK	3_ NOR	4_ NOR	5_ NOR	6_ NOR	8_ GBR	9_ GBR	10_ GBR	11_ IRL	13_ NLD	14_ DEU	15_ FRA	16_ NOR	
Modal age	1	2	3	4	5	2	3	1	1	1	1	1	1	All
0	0	0	0	0	0	0	0	0	0	1	1	0	1	0.23
1	0	0.2	0	0	0	0.2	0	0.2	0	0.89	1	0.1	0.8	0.26
2	-0.11	0	-0.11	-0.11	-0.11	-0.11	-0.11	-0.11	0	0.89	0.67	0	0.33	0.09
3	-0.2	0	-0.1	0.3	0	-0.1	-0.1	1.1	0.2	0.1	0.9	-0.1	0.6	0.2
4	0	0.2	0.2	0.2	0.25	-0.2	0	0.8	0.4	0.8	1.2	0	1.4	0.4
5	0	0	0	0	0	-0.5	0	-0.5	-1	0.5	0.5	0	0	-0.08
6	-0.2	-0.4	0	-0.2	0	-0.75	-0.2	-0.4	-0.4	0.4	0.8	0	0.8	-0.04
7	0.33	0	0.33	0.33	0	-0.33	0	-1.67	0	-1	1	0	0.33	-0.05
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	-0.67	-1	0.33	-0.67	0.33	0	0	-0.33	-1	-1.33	2	0	-0.33	-0.21
Weighted Mean	-0.1	-0.04	0.02	0.02	0.02	-0.12	-0.06	0.14	-0.06	0.41	0.96	0	0.62	0.14

Significant bias in age estimates was found between readers (Friedman rank sum test, p < 0.05 and Wilcoxon paired test, p < 0.05). Table 5a shows the results of the Inter reader and reader against modal age bias tests and indicates that there is bias between readers NLD1, DEU1 and NOR1 and all of the other readers and also with modal age. These results are confirmed by the high positive values of relative bias for these readers (Table 4a), indicating that these readers are generally over estimating the ages in comparison

to the modal age. The age bias plots in Annex 1 confirm these results. The general trend seen in the relative bias values (Table 4a) is for the ages to be overestimated as opposed to underestimated in comparison to modal age, which is also apparent in the age error matrix in Table 6a.

	1_ DNK1	3_ NOR2	4_ NOR3	5_ NOR4	6_ NOR5	8_ GBR2	9_ GBR3	10_ GBR1	11_ IRL1	13_ NLD1	14_ DEU1	15_ FRA1	16_ NOR1
1_ DNK1	NA	-	*	-	-	-	-	-	-	**	**	-	**
3_ NOR2	-	NA	-	-	-	-	-	-	-	**	**	-	**
4_ NOR3	*	-	NA	-	-	-	-	-	-	*	**	-	**
5_ NOR4	-	-	-	NA	-	-	-	-	-	*	**	-	**
6_ NOR5	-	-	-	-	NA	-	-	-	-	*	**	-	**
8_ GBR2	-	-	-	-	-	NA	-	-	-	**	**	-	**
9_ GBR3	-	-	-	-	-	-	NA	-	-	**	**	-	**
10_ GBR1	-	-	-	-	-	-	-	NA	-	-	**	-	*
11_ IRL1	-	-	-	-	-	-	-	-	NA	*	**	-	**
13_ NLD1	**	**	*	*	*	**	**	-	*	NA	**	*	-
14_ DEU1	**	**	**	**	**	**	**	**	**	**	NA	**	*
15_ FRA1	-	-	-	-	-	-	-	-	-	*	**	NA	**
16_ NOR1	**	**	**	**	**	**	**	*	**	-	*	**	NA
modal Age	-	-	-	-	-	-	-	-	-	*	**	-	**

Table 5a. Inter reader bias test for all readers in the North Sea exchange. "-" = no sign of bias (p>0.05); "*" = possibility of bias (0.01) and "* *" = certainty of bias (<math>p < 0.01).

	Modal A	Age								
Age	0	1	2	3	4	5	6	7	8	9
0	0.8	0.02	0	0.01	0	0	0	0	0	0
1	0.2	0.77	0.07	0	0	0	0	0	0	0
2	0	0.19	0.76	0.06	0	0	0	0	0	0
3	0	0.02	0.17	0.75	0.04	0	0	0	0	0
4	0	0	0	0.17	0.69	0.1	0	0	0	0
5	0	0	0	0.01	0.2	0.8	0.14	0.03	0	0
6	0	0	0	0	0.02	0.1	0.74	0.07	0	0.03
7	0	0	0	0	0.04	0	0.12	0.67	0	0.07
8	0	0	0	0	0	0	0	0.23	0	0.27
9	0	0	0	0	0	0	0	0	0	0.47
10	0	0	0	0	0	0	0	0	0	0.1
11	0	0	0	0	0	0	0	0	0	0.03
13	0	0	0	0	0	0	0	0	0	0.03

Table 6a. Age Error matrix based on all "expert" readers in the North Sea exchange shows the proportion of each modal age estimated correctly (in bold) and mis-aged as other ages (underestimated in red and overestimated in blue).

Growth data:

Figure 2a shows the combined growth curves for all fish and all readers in the North Sea exchange. FRA1 omitted to mark the centre point on every image and therefor his average growth curve falls below all of the others. He was omitted from the analysis. The Linear Mixed Effects Model analysis showed a significant reader effect on both the intercept and slope of the LMEM (LMEM, p < 0.05) meaning that there are differences between readers. The post-hoc analysis revealed that GBR1, NDL1, NOR1 and NOR4 stand out from the other readers (just significant) and thus what they are interpreting to be the winter rings differ slightly from the rest of the group. The overlap between GBR1 winter ring 1 and winter ring 2 of the other readers indicates that what he interprets as the first winter ring is in fact the second winter ring. Despite this he still attains a higher overall age.

Figure 2a. Plot of average distance to the centre for winter rings 1-10 for all readers in the North Sea exchange. The boxes represent the mean, upper and lower box boundaries of the interquartile range, whiskers represent the minimum and maximum values and the dots represent the outliers.

Celtic Sea Exchange

Age data:

When all of the age readers are included the overall percentage agreement is 73.8% with a CV of 19.8%. For ages 0-4 the average agreement is above 75% with a general decrease in agreement with an increase in age. The CV for modal age 1 is high at 45.4%. NLD1 is overestimating the age by 2 years in most cases and DEU1 overestimating by 1 year in most cases (Figure 1b). This trend continues with the older fish and is confirmed by the relative bias values (Table 4.b) which also shows GBR1 and IRL1 to have a strong negative bias values indicating underestimation of ages in comparison to modal age. CV decreases to a low of 9.1% at modal age 7 but increases slightly again. When only the "expert" readers are included the % agreement increases slightly to 75.2% while the CV improves slightly to 19.6%. The overall index of average percentage error (APE) is 13.5% which when calculated on only the "expert" readers increases to 14.2%.

Figure 1b. Herr_VII_39, capture date 02/12/2013, modal age 6, % agreement 77% and CV 11%. Readers GBR1 (blue), NOR5 (black), DEU1 (red) and NLD1 (green) assigning ages 5, 6, 7 and 8 years respectively.

Table 1b shows the age composition based on the estimated ages for all readers. Tables 2b, 3b and 4b show the % Agreement, CV and relative bias based on modal age for all readers.

	1	3	4	5	6	8	9	10	11	13	14	15	16	
	DNK	NOR	NOR	NOR	NOR	GBR	GBR	GBR	IRL	NLD	DEU	FRA	NOR	
Age	1	2	3	4	5	2	3	1	1	1	1	1	1	Total
1	4	4	4	4	4	4	4	8	4	0	0	4	4	48
2	12	10	12	12	12	12	12	8	12	1	4	12	12	131
3	12	13	12	12	13	13	12	13	11	6	12	12	7	148
4	7	7	7	8	6	6	7	6	9	15	11	7	11	107
5	3	6	4	4	4	6	3	10	6	11	8	4	5	74
6	6	5	5	6	7	3	8	1	7	10	3	7	7	75
7	4	3	4	3	2	4	2	3	0	4	6	2	3	40
8	1	0	1	0	1	1	1	1	1	2	3	1	0	13
9	1	0	0	0	0	0	0	0	0	1	1	0	0	3
10	0	1	1	1	1	1	1	0	0	0	1	1	0	8
11	0	0	0	0	0	0	0	0	0	0	0	0	1	1
12	0	0	0	0	0	0	0	0	0	0	1	0	0	1
All	50	49	50	50	50	50	50	50	50	50	50	50	50	649

Table 1b. Age composition based on all readers in the Celtic Sea exchange

Table 2b.	Percentage	Agreement	based on	all readers	in the	Celtic Sea	exchange
	0	0					

Modal	1_ DNK	3_ NOR	4_ NOR	5_ NOR	6_ NOR	8_ GBR	9_ GBR	10_ GBR	11_ IRL	13_ NLD	14_ DEU	15_ FRA	16_ NOR	
age	1	2	3	4	5	2	3	1	1	1	1	1	1	All
0	100	100	100	100	100	100	100	100	100	0	0	100	0	83
1	100	80	100	100	100	80	100	80	80	11	0	90	60	79
2	89	100	89	89	89	89	89	44	78	11	33	100	89	77
3	80	100	90	70	80	90	90	10	80	60	10	90	60	75
4	100	80	80	80	75	80	100	80	60	20	0	100	40	75
5	100	100	100	100	100	50	100	50	0	50	50	100	100	60
6	80	60	100	80	100	25	80	0	60	60	20	100	40	69
7	67	100	67	67	100	67	100	0	33	33	0	100	67	54
8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	67	33	67	33	67	100	33	0	0	33	33	100	67	54
10	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Weigh ted mean	92.4	90.9	93	88.8	91.9	78.9	93.8	52.6	65	26	17.8	96.2	65.6	73.8

Modal	1_ DNK 1	3_ NOR 2	4_ NOR 2	5_ NOR	6_ NOR	8_ GBR 2	9_ GBR 2	10_ GBR 1	11_ IRL 1	13_ NLD 1	14_ DEU 1	15_ FRA 1	16_ NOR 1	All
Age	1	2	3	4	5	2	3	1	1	1	1	1	1	All
0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	0	0	0	0	0	0	0	40	0	18	0	0	0	45.4
2	0	14	0	0	0	0	0	46	0	12	0	0	0	26.9
3	0	0	0	0	0	0	0	22	9	12	7	0	19	17.4
4	0	0	0	0	10	10	0	32	0	10	0	0	10	14.9
5	10	0	0	0	0	0	10	11	11	8	8	0	10	10.6
6	8	9	8	17	0	14	6	12	10	15	7	0	10	11.6
7	0	0	0	11	0	0	11	0	0	11	8	0	11	9.1
8	0	0	0	0	0	0	0	0	0	0	0	0	0	14.1
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	0	0	0	0	0	0	0	0	0	0	0	0	0	13.8
Weighted Mean	1.9	4.4	1.1	2.8	1.4	3.4	2.1	26.6	4.4	11.8	3.6	0	8.6	19.8

Table 3b. Coefficient of Variation (CV) based on all readers in the Celtic Sea exchange

Table 4b. Relative Bias based on all readers in the Celtic Sea exchange (red values indicate negative values and black indicated positive values)

Modal age	1_ DNK 1	3_ NOR 2	4_ NOR 3	5_ NOR 4	6_ NOR 5	8_ GBR 2	9_ GBR 3	10_ GBR 1	11_ IRL 1	13_ NLD 1	14_ DEU 1	15_ FRA 1	16_ NOR 1	All
0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	0	0	0	0	0	0	0	0.25	0	1.75	1	0	0	0.23
2	0	0.09	0	0	0	0	0	-0.17	0	1.75	1	0	0	0.21
3	0	0	0	0	0	0	0	0.08	0.08	1.5	1.08	0	0.58	0.26
4	0	0	0	0	-0.14	-0.14	0	-0.43	0	1.43	1	0	-0.14	0.12
5	0.25	0	0	0	0	0	0.25	-0.25	-0.25	1.25	1.25	0	0.25	0.21
6	0.29	-0.29	0.29	0	0	0	0.14	-1	-0.43	0.43	1.29	0	0	0.05
7	0	0	0	-0.5	0	0	-0.5	0	-1	-0.5	1.5	0	-0.5	-0.12
8	0	-1	0	-2	0	0	0	0	-2	1	2	0	-1	-0.23
9	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	-1	0	0	0	0	0	0	-3	-2	-2	2	0	1	-0.38
Weighted Mean	0.04	-0.04	0.04	-0.06	-0.02	-0.02	0.02	-0.28	-0.18	1.24	1.14	0	0.12	0.15

Significant bias in age estimates was found between readers (Friedman rank sum test, p < 0.05 and Wilcoxon paired test, p < 0.05). Table 5b shows the results of the Inter reader and reader against modal age bias tests and indicates that there is a certainty of bias between NLD1 and DEU1 against the other readers

and modal age. There is also a possibility of bias between GBR1, FRA1 and NOR1 and some of the readers but not against modal age. IRL1 shows some possible bias with some of the readers and with modal age. These results are confirmed by the relative bias values in Table 4.b and the age bias plots in Annex 2. The general trend seen in the relative bias values (Table 4b) is for the ages to be overestimated as opposed to underestimated in comparison to modal age, which is also apparent in the age error matrix in Table 6b.

(10- 0.00)	60		01 101010	10.0- 10			0010		1) and				
	1_ DNK1	3_ NOR2	4_ NOR3	5_ NOR4	6_ NOR5	8_ GBR2	9_ GBR3	10_ GBR1	11_ IRL1	13_ NLD1	14_ DEU1	15_ FRA1	16_ NOR1
1_ DNK1	NA	-	-	-	-	-	-	*	**	**	**	-	-
3_ NOR2	-	NA	-	-	-	-	-	-	*	**	**	-	-
4_ NOR3	-	-	NA	-	-	-	-	*	*	**	**	-	-
5_ NOR4	-	-	-	NA	-	-	-	-	-	**	**	-	*
6_ NOR5	-	-	-	-	NA	-	-	-	-	**	**	-	-
8_ GBR2	-	-	-	-	-	NA	-	-	-	**	**	-	-
9_ GBR3	-	-	-	-	-	-	NA	*	*	**	**	-	-
10_ GBR1	*	-	*	-	-	-	*	NA	-	**	**	-	*
11_ IRL1	**	*	*	-	-	-	*	-	NA	**	**	*	**
13_ NLD1	**	**	**	**	**	**	**	**	**	NA	-	**	**
14_ DEU1	**	**	**	**	**	**	**	**	**	-	NA	**	**
15_ FRA1	-	-	-	-	-	-	-	-	*	**	**	NA	-
16_ NOR1	_	-	-	*	-	-	-	*	**	**	**	_	NA
Modal Age	-	-	-	-	-	-	-	-	*	**	**	-	-

Table 5b. Inter reader bias test for all readers in the Celtic Sea exchange where "-" = no sign of bias
(n>0.05): "*" = possibility of bias (0.010.05) and "* *" = certainty of bias (p<0.01).

	Modal	Age								
Age	1	2	3	4	5	6	7	8	9	10
1	0.8	0	0	0	0	0	0	0	0	0
2	0.12	0.79	0	0	0	0	0	0	0	0
3	0.08	0.13	0.79	0.01	0	0	0	0	0	0
4	0	0.08	0.15	0.79	0.02	0.01	0	0	0	0
5	0	0	0.06	0.16	0.72	0.09	0	0	0	0
6	0	0	0	0.04	0.2	0.66	0.25	0.2	0	0
7	0	0	0	0	0.05	0.2	0.65	0.1	0	0
8	0	0	0	0	0	0.04	0.05	0.5	0	0.2
9	0	0	0	0	0	0	0.05	0.1	0	0.1
10	0	0	0	0	0	0	0	0.1	0	0.6
12	0	0	0	0	0	0	0	0	0	0.1

Table 6b. Age Error matrix based on all "expert" readers in the Celtic Sea exchange shows the proportion of each modal age estimated correctly (in bold) and mis-aged as other ages (underestimated in red and overestimated in blue).

Growth data:

Figure 2b shows the combined growth curves for all fish and all readers in the Celtic Sea exchange. FRA1 omitted to mark the centre point on every image and therefor his average growth curve falls below all of the others. He was omitted from the analysis. The Linear Mixed Effects Model analysis showed a significant reader effect on both the intercept and slope of the LMEM (LMEM, p < 0.05) meaning that there are differences between readers. The same results are seen as with the North Sea exchange where the posthoc analysis revealed that GBR1, NDL1, NOR1 and NOR4 stand out from the other readers (just significant) and thus what they are interpreting to be the winter rings differ slightly from the rest of the group. This is most obvious for GBR1 as what he interprets to be winter ring 1 is in fact winter ring 2 (Figure 1b).

Irish Sea Exchange

Age data:

When all of the age readers are included the overall percentage agreement is 76.9% with a CV of 16.6%. For modal ages 1 and 2 the % agreement is high at 84% and 80% respectively but decreases with an increase in fish age. The % agreement would be higher at these low ages if NLD1 and DEU1 were not overestimating the ages (both have 0% agreement at ages 1, 2 and 3). This trend continues with the older fish and is confirmed by the positive relative bias values in Table 4c which also show GBR1 to have a strong overall negative bias. At modal ages 1 and 2 CV is high at 32.7 and 20% respectively. This gradually decreases to a low of 10.1% at modal age 6 before increasing again. When only the "expert" readers are included the % agreement only improves slightly to 77.7% while the CV decreases to 16%. The overall index of average percentage error (APE) is 11% and when calculated based on only the "expert" readers is 11.6%.

Table 1c shows the age composition based on the estimated ages for all readers. Tables 2c, 3c and 4c show the % Agreement, CV and relative bias based on modal age for all readers.

	1_ DNK	3_ NOR	4_ NOR	5_ NOR	6_ NOR	8_ GBR	9_ GBR	10_ GBR	11_ IRL	13_ NLD	14_ DEU	15_ FRA	16_ NOR	
Age	1	2	3	4	5	2	3	1	1	1	1	1	1	Total
1	6	6	6	6	6	6	6	8	6	0	0	6	7	69
2	10	11	11	11	11	10	11	14	11	6	5	11	10	132
3	11	11	9	9	9	10	9	7	10	11	11	9	10	126
4	13	12	13	13	13	13	13	11	12	10	10	13	13	159
5	3	7	4	4	4	4	3	4	7	11	12	4	2	69
6	5	2	5	4	5	5	5	3	4	7	5	5	4	59
7	0	1	0	1	0	1	0	3	0	4	4	1	2	17
8	2	0	2	2	2	1	2	0	0	1	0	1	1	14
9	0	0	0	0	0	0	0	0	0	0	2	0	1	3
All	50	50	50	50	50	50	49	50	50	50	49	50	50	648

Table 1c. Age composition for all readers in the Irish Sea exchange

Table 2c. Percentage agreement based on modal age for all readers in the Irish Sea exchange

Modal age	1_ DNK 1	3_ NOR 2	4_ NOR 3	5_ NOR 4	6_ NOR 5	8_ GBR 2	9_ GBR 3	10_ GBR 1	11_ IRL 1	13_ NLD 1	14_ DEU 1	15_ FRA 1	16_ NOR 1	All
0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	100	100	100	100	100	100	100	83	100	0	0	100	100	84
2	91	100	100	100	100	91	100	73	100	0	0	100	91	80
3	100	100	100	100	100	100	100	22	100	0	0	100	100	79
4	92	85	100	100	100	92	100	46	92	15	8	100	92	79
5	75	75	100	100	100	75	100	25	100	25	0	100	25	69
6	100	20	100	80	100	100	100	40	40	40	20	100	60	69
7	0	0	0	0	0	100	0	100	0	100	0	100	100	38

8	100	0	100	100	100	100	100	0	0	100	0	100	0	62
Weighted mean	91.9	82.1	98	96	98	93,9	98	49.9	87.9	13.9	4.2	100	83.9	76.9

Modal age	1_ DNK 1	3_ NOR 2	4_ NOR 3	5_ NOR 4	6_ NOR 5	8_ GBR 2	9_ GBR 3	10_ GBR 1	11_ IRL 1	13_ NLD 1	14_ DEU 1	15_ FRA 1	16_ NOR 1	All
0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	0	0	0	0	0	0	0	35	0	0	0	0	0	32.7
2	14	0	0	0	0	14	0	27	0	0	0	0	16	20
3	0	0	0	0	0	0	0	32	0	8	0	0	0	15.2
4	7	10	0	0	0	7	0	23	7	12	6	0	7	12.1
5	11	11	0	0	0	11	0	12	0	9	0	0	23	11.7
6	0	9	0	7	0	0	0	14	10	8	7	0	18	10.1
7	0	0	0	0	0	0	0	0	0	0	0	0	0	11.8
8	0	0	0	0	0	0	0	0	0	0	0	0	0	10.2
Weighted mean	5.8	4.4	0	0.7	0	5.8	0	24.2	2.8	6.1	2.3	0	9	16.6

Table 3c. CV based on modal age for all readers in the Irish Sea exchange

Table 4c. Relative Bias based on modal age for all readers in the Irish Sea exchange (red values indicate negative values and black indicated positive values)

Modal age	1_ DNK 1	3_ NOR 2	4_ NOR 3	5_ NOR 4	6_ NOR 5	8_ GBR 2	9_ GBR 3	10_ GBR 1	11_ IRL 1	13_ NLD 1	14_ DEU 1	15_ FRA 1	16_ NOR 1	All
0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	0	0	0	0	0	0	0	0.17	0	1	1	0	0	0.17
2	0.09	0	0	0	0	0.09	0	-0.27	0	1	1	0	-0.09	0.14
3	0	0	0	0	0	0	0	-0.33	0	1.11	1	0	0	0.14
4	-0.08	-0.15	0	0	0	0.08	0	-0.15	-0.08	1	0.92	0	-0.08	0.11
5	-0.25	-0.25	0	0	0	-0.25	0	-0.75	0	0.75	1	0	0.5	0.06
6	0	-0.8	0	0.2	0	0	0	-0.2	-0.6	0.6	0.8	0	0.2	0.02
7	1	-1	1	1	1	0	1	0	-1	0	2	0	0	0.38
8	0	-1	0	0	0	0	0	-1	-2	0	1	0	1	-0.15
Weighted mean	0	-0.18	0.02	0.04	0.02	0.02	0.02	-0.24	-0.14	0.92	0.98	0	0.04	0.12

Significant bias in age estimates was found between readers (Friedman rank sum test, p < 0.05 and Wilcoxon paired test, p < 0.05). Table 5c shows the results of the Inter reader and reader against modal age bias tests and indicates that there is a certainty of bias between NLD1 and DEU1 against the other readers and modal age. NOR2 also shows certainty of bias against modal age and a possibility of bias against some

of the other readers. There is a possibility of bias between GBR1 and IRL1 and some of the other readers and also modal age. These results are confirmed by the relative bias values in Table 4c and the age bias plots in Annex 3. The general trend seen in the relative bias values (Table 4c) is for the ages to be overestimated as opposed to underestimated in comparison to modal age, which is also apparent in the age error matrix in Table 6c.

possibility	0. 5105	4 ⁻ ± 0.0 ± -p					~.~. (p	<u></u>					
	1_ DNK1	3_ NOR2	4_ NOR3	5_ NOR4	6_ NOR5	8_ GBR2	9_ GBR3	10_ GBR1	11_ IRL1	13_ NLD1	14_ DEU1	15_ FRA1	16_ NOR1
1													
DNK1	NA	*	-	-	-	-	-	*	-	**	**	-	-
3_ NOR2	*	NA	**	**	**	*	**	-	-	**	**	**	*
4_ NOR3	-	**	NA	-	-	-	-	*	*	**	**	-	-
5_ NOR4	-	**	-	NA	-	-	-	*	*	**	**	-	-
6_ NOR5	-	**	-	-	NA	-	-	*	*	**	**	-	-
8_ GBR2	-	*	-	-	-	NA	-	*	*	**	**	-	-
9_ GBR3	-	**	-	-	-	-	NA	*	*	**	**	-	-
10_ GBR1	*	-	*	*	*	*	*	NA	-	**	**	*	*
11_ IRL1	-	-	*	*	*	*	*	-	NA	**	**	*	-
13_ NLD1	**	**	**	**	**	**	**	**	**	NA	-	**	**
14_ DEU1	**	**	**	**	**	**	**	**	**	-	NA	**	**
15_ FRA1	-	**	-	-	-	-	-	*	*	**	**	NA	-
16_ NOR1	_	*	_	_	_	_	_	*	_	**	**	_	NA
Modal age	-	**	-	-	-	-	-	*	*	**	**	-	-

Table 5c. Inter reader bias test for all readers in the Irish Sea exchange. "-" = no sign of bias (p>0.05); "*" = possibility of bias (0.01) and "* *" = certainty of bias (<math>p<0.01).

	Modal	Age						
Age	1	2	3	4	5	6	7	8
1	0.81	0	0	0	0	0	0	0
2	0.19	0.79	0	0	0	0	0	0
3	0	0.21	0.8	0.03	0	0	0	0
4	0	0	0.19	0.79	0.05	0	0	0
5	0	0	0.01	0.16	0.77	0.14	0	0
6	0	0	0	0.02	0.18	0.7	0.2	0.1
7	0	0	0	0	0	0.16	0.2	0.1
8	0	0	0	0	0	0	0.5	0.7
9	0	0	0	0	0	0	0.1	0.1

Table 6c. Age Error matrix based on all "expert" readers in the Irish Sea exchange shows the proportion of each modal age estimated correctly (in bold) and mis-aged as other ages (underestimated in red and overestimated in blue).

Growth data:

Figure 3a shows the combined growth curves for all fish and all readers in the Irish Sea exchange. FRA1 omitted to mark the centre point on every image and therefor his average growth curve falls below all of the others. He was omitted from the analysis. The Linear Mixed Effects Model analysis showed a significant reader effect on both the intercept and slope of the LMEM (LMEM, p < 0.05) meaning that there are differences between readers. The results are more varied this time and the post-hoc analysis revealed more significant differences between the readers. NOR2, NOR3, NOR4 and NOR5 annotations are similar while the rest of the group appear to be annotating the images somewhat differently.

VIa (N and S) Exchange

Age data:

When all of the age readers are included the overall percentage agreement is 66.8% with a CV of 20%. For modal ages 0-3 the % agreement is above 70% with a general decrease seen with an increase in fish age. Figure 4a shows fish VIa_37, modal age 1, % agreement of 69% and CV of 58%. For modal age 1 the average CV is very high at 48.5%, this is partly due to general mis interpretation of the structures combined with a routine overestimation of these young fish by NLD1 and DEU1. This trend continues with the older fish and is shown by the strong positive bias values (Table 4d) for these 2 readers. The CV decreases to a low of 11.4% at age 5 before increasing slightly again. When only the "expert" readers are included the % agreement increases to 69.1% and the CV improves to 18.8%. The overall index of average percentage error (APE) is 13.8% and when calculated based only on the "expert" readers is 13.6%.

Figure 4a. Herr VIa_37, capture date 25/02/15, 69% agreement, CV 58% and modal age 1. Readers NOR1 (yellow), GBR2 (blue) and NLD1 (green) assigning ages of 0, 1 and 2 respectively.

Table 1d shows the age composition based on the estimated ages for all readers. Tables 2d, 3d and 4d show the % Agreement, CV and relative bias based on modal age for all readers.

	1_ DNK	3_ NOR	4_ NOR	5_ NOR	6_ NOR	8_ GBR	9_ GBR	10_ GBR	11_ IRL	13_ NLD	14_ DEU	15_ FRA	16_ NOR	
Age	1	2	3	4	5	2	3	1	1	1	1	1	1	Total
0	1	1	1	3	1	1	1	1	1	1	0	1	2	15
1	6	6	6	6	6	6	5	5	5	0	1	6	8	66
2	7	7	7	4	7	7	8	8	7	5	6	7	2	82
3	7	7	8	10	7	6	7	2	8	9	7	7	12	97
4	8	8	7	5	7	14	7	15	8	10	6	8	5	108
5	9	8	7	13	11	3	9	11	12	11	6	10	13	123
6	7	8	9	3	6	8	9	1	6	5	10	7	4	83
7	2	1	1	2	1	2	0	4	0	7	8	1	2	31
8	3	2	1	3	1	1	4	3	2	2	2	2	2	28
9	0	2	1	0	1	2	0	0	1	0	3	1	0	11
10	0	0	2	0	2	0	0	0	0	0	0	0	0	4
All	50	50	50	49	50	50	50	50	50	50	49	50	50	648

Table 1d. Age composition for all readers in the VIa (N and S) exchange

Table 20, Felcentage Agreentent based on moual age for an readers in the via (in and 5) exchange
--

	1_	3_	4_	5_	6_	8_	9_	10_	11_	13_	14_	15_	16_	
Modal	DNK	NOR	NOR	NOR	NOR	GBR	GBR	GBR	IRL	NLD	DEU	FRA	NOR	
age	1	2	3	4	5	2	3	1	1	1	1	1	1	All
0	100	100	100	100	100	100	100	100	100	0	0	100	0	77
1	100	100	100	33	100	100	83	83	83	0	0	100	50	72
2	100	100	100	29	100	100	100	100	86	0	0	100	14	71
3	100	100	86	100	100	86	100	29	86	0	0	100	86	75
4	100	88	75	38	88	100	88	50	62	25	0	100	38	65
5	89	89	67	89	78	22	89	44	89	56	0	100	67	68
6	86	100	86	43	57	86	100	14	57	43	14	86	14	60
7	100	0	50	50	50	100	0	50	0	0	50	50	100	46
8	100	67	33	67	33	33	100	67	67	0	0	67	67	54
Weigh														
mean	96.1	90.1	80.1	57.3	82.1	78	90.1	53.9	74	20.1	4	94.1	48.1	66.8

Modal age	1_ DNK 1	3_ NOR 2	4_ NOR 3	5_ NOR 4	6_ NOR 5	8_ GBR 2	9_ GBR 3	10_ GBR 1	11_ IRL 1	13_ NLD 1	14_ DEU 1	15_ FRA 1	16_ NOR 1	All
0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	0	0	0	89	0	0	35	35	35	22	0	0	110	48.5
2	0	0	0	50	0	0	0	0	33	0	0	0	55	26
3	0	0	12	0	0	12	0	18	12	44	0	0	13	17.9
4	0	24	12	22	9	0	9	26	17	10	9	0	22	16.5
5	7	7	9	7	8	19	7	12	7	16	7	0	12	11.4
6	6	0	6	14	10	6	0	26	10	17	8	6	12	12.8
7	0	28	25	9	18	0	20	24	0	0	9	11	0	13.6
8	0	7	11	8	12	7	0	8	7	0	0	7	16	10.6
Weighte d Mean	2.1	6.6	7.7	25.8	5.7	6.4	7.7	18.1	16.3	15.7	4.3	1.7	31	20

Table 3d. CV based on modal age for all readers in the VIa (N and S) exchange

Table 4d. Relative Bias values for all readers in the VIa (N and S) exchange (red values indicate negative	ve
values and black indicated positive values)	

Modal	1_ DNK	3_ NOR	4_ NOR	5_ NOR	6_ NOR	8_ GBR	9_ GBR	10_ GBR	11_ IRL	13_ NLD	14_ DEU	15_ FRA	16_ NOR	A.II.
age	1	2	5	4	5	2	3	1	1	1	1	1	1	All
0	0	0	0	0	0	0	0	0	0	2	1	0	1	0.31
1	0	0	0	0	0	0	0.17	0.17	0.17	1.33	1	0	0	0.22
2	0	0	0	-0.43	0	0	0	0	0.29	1	1	0	-0.29	0.12
3	0	0	0.14	0	0	0.14	0	0.86	0.14	0.43	1	0	-0.14	0.2
4	0	0.38	-0.25	-0.12	0.12	0	0.12	1	-0.12	0.75	1.25	0	-0.12	0.23
5	0.11	-0.11	0.33	-0.11	0.22	-0.33	0.11	-0.56	-0.11	0.33	1.22	0	0.11	0.09
6	-0.14	0	-0.14	-0.71	-0.43	-0.14	0	-0.71	-0.43	0.14	1	-0.14	-1	-0.21
7	0	0.5	1.5	0.5	1	0	0	-1	-1	1	0.5	-0.5	0	0.19
8	0	0.33	1	-0.33	1.33	0.67	0	-0.33	0.33	-1	1	0.33	-0.67	0.21
Weighte d Mean	0	0.08	0.14	-0.2	0.12	-0.02	0.06	0.04	-0.04	0.58	1.06	-0.02	-0.22	0.12

Significant bias in age estimates was found between readers (Friedman rank sum test, p < 0.05 and Wilcoxon paired test, p < 0.05). Table 5d shows the results of the Inter reader and reader against modal age bias tests and indicates that there is a certainty of bias between NLD1 and DEU1 against the other readers and modal age. NOR1 and NOR4 show a possibility of bias against some of the other readers. These results are confirmed by the relative bias values in Table 4d and the age bias plots in Annex 4. The general trend seen in the relative bias values (Table 4d) is for the ages to be overestimated as opposed to underestimated in comparison to modal age, which is also apparent in the age error matrix in Table 6d.

·	1	, ,	<u>,</u>	, E	6	0	<u>،</u>	10	11 /	12	14	10	16
	1_	5_	4_	5_	0_	o_ 00000	9_	10_	11_	15_	14_	15_	10_
	DNK1	NORZ	NOR3	NOR4	NOR5	GBRZ	GBR3	GBR1	IKLI	NLD1	DEUI	FRAT	NOR1
1_													
DNK1	NA	-	-	-	-	-	-	-	-	**	**	-	-
3													
NOR2	-	NA	-	*	-	-	-	-	-	**	**	-	-
4_													
NOR3	-	-	NA	*	-	-	-	-	-	*	**	-	*
5													
NOR4	-	*	*	NA	**	-	*	-	-	**	**	-	-
6													
NOR5	-	-	-	**	NA	-	-	-	-	**	**	-	*
8													
GBR2	-	-	-	-	-	NA	-	-	-	**	**	-	-
9													
GBR3	-	-	-	*	-	-	NA	-	-	**	**	-	*
10													
GBR1	-	-	-	-	-	-	-	NA	-	**	**	-	-
11													
IRL1	-	-	-	-	-	-	-	-	NA	**	**	-	-
13													
NLD1	**	**	*	**	**	**	**	**	**	NA	**	**	**
14													
DEU1	**	**	**	**	**	**	**	**	**	**	NA	**	**
15													
FRA1	-	-	-	-	-	-	-	-	-	**	**	NA	-
16													
NOR1	-	-	*	-	*	-	*	-	-	**	**	-	NA
Moda													
l age	-	-	-	-	-	-	-	-	-	**	**	-	-

Table 5d. Inter reader bias test for all readers in the VIa (N and S) exchange. "-" = no sign of bias (p>0.05); "*" = possibility of bias (0.01) and "* *" = certainty of bias (<math>p < 0.01).

	Modal	Age							
Age	0	1	2	3	4	5	6	7	8
0	0.8	0.03	0	0.01	0	0	0	0	0
1	0.1	0.7	0.06	0	0	0	0	0	0
2	0.1	0.23	0.71	0	0	0	0	0	0
3	0	0.03	0.21	0.78	0.09	0	0	0	0
4	0	0	0.01	0.21	0.66	0.04	0.03	0	0
5	0	0	0	0	0.21	0.74	0.17	0	0
6	0	0	0	0	0.02	0.18	0.67	0.25	0
7	0	0	0	0	0.01	0.03	0.11	0.35	0.13
8	0	0	0	0	0	0	0.01	0.25	0.53
9	0	0	0	0	0	0	0	0.1	0.23
10	0	0	0	0	0	0	0	0.05	0.1

Table 6d. Age Error matrix based on all "expert" readers in the VIa (N and S) exchange shows the proportion of each modal age estimated correctly (in bold) and mis-aged as other ages (underestimated in red and overestimated in blue).

Growth data:

Figure 4b shows the combined growth curves for all fish and all readers in the VIa (N and S) exchange. FRA1 omitted to mark the centre point on every image and therefor his average growth curve falls below all of the others. He was omitted from the analysis. The Linear Mixed Effects Model analysis showed a significant reader effect on both the intercept and slope of the LMEM (LMEM, p < 0.05) meaning that there are differences between readers. GBR1 and GBR2 stand out from the others readers (significant). GBR1 usually omits to mark the first winter ring and on some images is marking along the wrong axis. GBR2 has problems with the older fish. NOR1 also appears to be annotating slightly different in comparison to the other readers.

Conclusion

This full scale exchange covers 4 separate stocks (North Sea, Celtic Sea, Irish Sea and VIa (North and South) and was completed by 13 readers (10 of which are experts) from 9 institutes. It is not surprising that in comparison to the 2014 calibration exercise the percentage agreement for both the North Sea and Celtic Sea's has decreased given that, firstly, the number of participants has increased from 3 to 10 and secondly, not all readers are experienced in reading otoliths from all areas.

The index of average percentage error (APE) ranges from 11.6% to 14.8% and the coefficient of variation (CV) from 16% to 21.1% and similar problems are apparent for all stocks. For each stock there is a general trend where the overall relative bias values are positive meaning that the readers overestimate the ages in comparison to the modal age. This can also be seen in the age error matrices. This overall positive bias is due mostly to readers NLD1 and DEU1 who are repeatedly estimating 1 and sometimes 2 years over the modal age. For herring stocks, there can be confusion as to whether a fish is aged in terms of "rings" or "years". For autumn spawning herring stocks a difference of one year becomes apparent between the count of "rings" and "years". Readers were asked to provide the age in terms of "years". Providing an age based on a count of "rings" would explain the addition of one extra year to the age, additional years added to the age are then due to misinterpretation of the otoliths structure. The definition of age for these fish should be standardised to avoid further confusion.

In the 2014 calibration exercise the less experienced reader from Northern Ireland (GBR1) had a tendency to underestimate the age as the first winter ring was often not counted. This problem is still apparent and is most obvious by the comparison of the growth curves. The relative bias values confirm this underestimation for both the Celtic Sea and Irish Sea exercises. Interpretation of the subsequent winter rings can also lead to overestimation in some examples, more noticeably the younger fish.

The only other reader who clearly stands out from the group is NOR1, who is a trainee. In general she is overestimating the ages, partly due to misinterpretation of the edge.

For all areas the level of accuracy and precision improves dramatically when the problematic and inexperienced readers are excluded from the calculations. This improvement is slightly less for VIa (N & S). Thus, the compilation of agreed age collections of otoliths should be possible.

The growth curve analyses showed that both the first winter ring and the additional winter rings are interpreted differently by the group and clearly shows the issues associated with the misidentification of the first winter ring for GBR1. The issues associated with incorrectly annotating the images are also apparent as FRA1 omitted to mark the nucleus each time. Some of the other readers did not follow the instructions correctly and different axes were annotated on some occasions. This could lead to a significant difference revealed by the post-hoc analyses. The standardisation of annotation procedures is difficult and it is clear from the images that what the readers interpret to be the nucleus is not exact, nor do all readers interpret the beginning of each winter ring to be in the same place. As the fish age increases the distance between winter rings decreases and annotating the winter rings becomes more difficult, thus the overlap in the distance from centre to winter ring is more apparent for the older fish (from age 6 and over). Written

instructions and a live demonstration using WebGR were provided for the readers but standardisation of annotation procedures is still difficult and may confound the growth analyses results.

Given that for some of the stocks there are just 1 or 2 readers providing age estimates for assessment it did not make sense to compile age error matrices for all stocks. A North Sea matrix will be compiled based only on those readers providing age data for assessment and provided to HAWG 2016.

RECOMMENDATION	Adressed to
1. Compilation of a reference collection of agreed age fish	Age reading labs and WGBIOP
2. Standardisation of whether it is the count of "year" or "rings" which are used to define fish age for age reading exercises.	WGBIOP
3. Standardiation of procedures for annotation of images used in exchanges.	WGBIOP

References

Beamish, R. J. & Fournier, D. A. 1981. A method for comparing the precision of a set of age determinations. Can. J. Fish. Aqua. Sci. 38: 982-983

Eltink, G.W. (2000) Age reading comparisons. (MS Excel workbook version 1.0 October 2000)

ICES. 2014a. Report of the Planning Group on Commercial Catches, Discards and Biological Sampling (PGCCDBS). ICES CM 2014\ACOM:34.

ICES. 2014b. Report of the Workshop on Statistical Analysis of Biological Calibration Studies (WKSABCAL). ICES CM 2014\ACOM:35.

ICES. 2015. Report of the Herring Assessment Working Group for the Area South of 62°N (HAWG). ICES CM 2015\ACOM:06.

Annex 1 North Sea

	Longth	Capture	1_ DNK	3_ NOR	4_ NOR	5_ NOR	6_ NOR	8_ GBR	9_ GBR	10_ GBR	11_ IRI	13_ NLD	14_ DEU	15_ ERA	16_ NOR	Modal	% Agreem	
Image	Length	date	1	2	3	4	5	2	3	1	1	1	1	1	1	Age	ent	cv
Herr_IV_01jpg	18.5	29/06/2014	1	1	1	1	1	1	1	1	1	2	2	1	1	1	85	33
Herr_IV_02jpg	17.5	29/06/2014	1	1	1	1	1	1	1	1	1	2	2	1	1	1	85	33
Herr_IV_03jpg	16.5	29/06/2014	1	1	1	1	1	1	1	1	1	2	2	1	1	1	85	33
Herr_IV_04jpg	19.5	29/06/2014	1	1	1	1	1	2	1	1	1	0	2	1	1	1	77	46
Herr_IV_05jpg	21.5	29/06/2014	2	2	2	2	2	2	2	2	2	3	3	2	2	2	85	17
Herr_IV_06jpg	24.5	29/06/2014	2	2	2	2	2	2	2	2	2	3	3	2	2	2	85	17
Herr_IV_07jpg	23.5	29/06/2014	2	2	2	2	2	2	2	2	2	3	3	2	2	2	85	17
Herr_IV_08jpg	33.5	05/08/2014	7	7	9	9	9	9	8	7	8	9	9	9	9	9	62	10
Herr_IV_09jpg	32.5	05/08/2014	5	5	6	6	6	6	6	10	6	6	6	6	7	6	69	20
Herr_IV_10jpg	24	02/08/2014	2	2	2	2	2	2	2	3	3	3	2	2	5	2	69	36
Herr_IV_11jpg	22.5	02/08/2014	2	2	2	2	2	2	2	1	2	3	3	2	2	2	77	24
Herr_IV_12jpg	14.5	06/02/2013	1	1	1	1	1	1	1	1	0	NA	2	1	5	1	75	92
Herr_IV_13jpg	9.5	06/02/2013	1	2	1	1	1	2	1	1	2	1	2	2	2	1	54	36
Herr_IV_14jpg	11.5	06/02/2013	1	2	1	1	1	2	1	1	2	2	2	2	2	2	54	34
Herr_IV_15jpg	31.2	14/01/2013	9	8	10	8	9	9	10	12	8	8	13	9	9	9	38	17
Herr_IV_16jpg	28.5	14/01/2013	4	4	4	4	4	4	4	4	3	3	5	4	4	4	77	13
Herr_IV_17jpg	26	03/01/2013	3	3	3	4	3	3	3	4	4	3	4	3	4	3	62	15
Herr_IV_18jpg	23.5	03/01/2013	2	2	2	2	2	2	2	2	2	3	3	2	2	2	85	17
Herr_IV_19jpg	24.5	03/01/2013	3	3	3	3	3	3	3	4	3	4	4	3	3	3	77	14

Table 1.1. Fish data and all age readings for all fish in the North Sea exchange

	10 F	02/01/2012	1	1	1	1	1	1	1	1	1	2	2	1	2	1	77	26
Herr_IV_2Ujpg	13.5	03/01/2013	1	1	1	1	1	1	1	T	1	2	2	1	2	1	11	30
Herr_IV_21jpg	20.5	03/01/2013	2	2	2	2	2	2	2	1	2	3	3	2	2	2	77	24
Herr_IV_22jpg	24.5	12/08/2013	2	NA	2	2	2	1	2	3	1	3	2	2	2	2	67	30
Herr_IV_23jpg	19.5	12/08/2013	1	1	1	1	1	1	1	2	1	3	2	1	1	1	77	48
Herr_IV_24jpg	27.5	12/08/2013	4	4	4	4	4	3	4	8	4	5	5	4	9	4	62	36
Herr_IV_25jpg	29.5	12/08/2013	5	5	5	5	5	5	5	5	4	5	5	5	5	5	92	6
Herr_IV_26jpg	6.5	08/08/2013	0	0	0	0	0	0	0	0	0	1	1	0	1	0	77	-
Herr_IV_27jpg	15.5	08/08/2013	1	2	1	1	1	1	1	1	1	2	2	1	3	1	69	47
Herr_IV_28jpg	10.5	31/07/2013	0	0	0	0	0	0	0	0	0	1	1	0	1	0	77	-
Herr_IV_29jpg	26	12/08/2013	3	3	3	3	3	3	3	4	3	3	4	3	3	3	85	12
Herr_IV_30jpg	12.5	31/07/2013	0	0	0	0	0	0	0	0	0	1	1	0	1	0	77	-
Herr_IV_31jpg	25.5	10/08/2013	2	3	2	3	2	3	2	3	4	3	3	2	3	3	54	23
Herr_IV_32jpg	28	12/08/2013	2	3	3	3	3	2	3	5	3	3	4	3	5	3	62	29
Herr_IV_33jpg	28.5	01/08/2013	3	3	3	3	3	3	3	5	3	3	4	3	3	3	85	19
Herr_IV_34jpg	30.5	20/08/2013	9	9	9	8	10	9	9	7	8	6	11	9	8	9	46	15
Herr_IV_35jpg	30.6	04/09/2013	4	4	4	4	4	4	4	4	4	4	5	4	4	4	92	7
Herr_IV_36jpg	27.9	15/10/2013	6	6	6	5	6	5	6	5	6	7	7	6	8	6	54	14
Herr_IV_37jpg	29.4	15/10/2013	6	6	6	6	6	5	6	5	5	6	7	6	6	6	69	9
Herr_IV_38jpg	31.2	15/10/2013	8	7	8	8	7	7	7	6	6	7	8	7	8	7	46	10
Herr_IV_39jpg	28.5	15/10/2013	6	6	6	6	6	NA	6	4	5	7	7	6	6	6	67	13
Herr_IV_40jpg	32.5	14/10/2013	4	4	4	5	NA	4	4	4	7	5	5	4	5	4	58	20
Herr_IV_41jpg	26	18/11/2013	3	3	3	3	4	3	3	4	3	5	4	3	4	3	62	19
Herr_IV_42jpg	28.8	08/10/2013	6	5	6	6	6	5	5	4	6	6	7	6	7	6	54	14
Herr_IV_43jpg	27	08/10/2013	5	5	5	5	5	4	5	4	4	6	6	5	5	5	62	13
Herr_IV_44jpg	30.3	26/11/2013	7	7	7	7	7	6	7	5	7	6	8	7	7	7	69	11

Herr_IV_45jpg	28.3	09/12/2013	3	3	3	4	3	3	3	6	3	3	4	3	3	3	77	26
Herr_IV_46jpg	24.5	09/12/2013	1	1	1	1	1	1	1	2	1	3	2	1	1	1	77	48
Herr_IV_47jpg	25.1	09/12/2013	3	3	3	3	3	3	3	2	3	0	4	3	3	3	77	33
Herr_IV_48jpg	26.4	09/12/2013	3	3	3	4	3	3	3	4	3	4	4	3	5	3	62	19
Herr_IV_49jpg	26.5	23/12/2013	4	5	5	4	5	4	4	4	4	7	6	4	5	4	54	20
Herr_IV_50jpg	31.3	24/12/2013	7	7	7	7	7	7	7	5	8	5	8	7	7	7	69	13
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Means (CV and PA)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	70	24
Total read	-	-	50	49	50	50	49	49	50	50	50	49	50	50	50		-	
Total NOT read	-	-	0	1	0	0	1	1	0	0	0	1	0	0	0		-	

Table 1.2 Age composition for all readers in the North Sea exchange

	1_ DNK	3_ NOR	4_ NOR	5_ NOR	6_ NOR	8_ GBR	9_ GBR	10_ GBR	11_ IRL	13_ NLD	14_ DEU	15_ FRA	16_ NOR	
Age	1	2	3	4	5	2	3	1	1	1	1	1	1	Total
0	3	3	3	3	3	3	3	3	4	2	0	3	0	33
1	11	8	11	11	11	9	11	11	9	4	3	9	9	117
2	10	10	9	8	9	11	9	7	8	6	13	11	10	121
3	8	10	9	7	8	10	9	3	10	17	7	9	7	114
4	5	4	4	7	4	5	5	12	7	3	9	5	4	74
5	3	5	3	4	3	4	3	7	2	5	5	2	8	54
6	4	3	5	4	5	2	4	2	4	6	3	5	2	49
7	3	4	2	2	3	2	3	2	2	4	4	3	4	38
8	1	1	1	3	0	0	1	1	4	1	3	0	3	19
9	2	1	2	1	2	3	1	0	0	1	1	3	3	20

13	0	0	0	0	0	0	0	0	0	0	1	0	0	1
12	0	0	0	0	0	0	0	1	0	0	0	0	0	1
11	0	0	0	0	0	0	0	0	0	0	1	0	0	1
10	0	0	1	0	1	0	1	1	0	0	0	0	0	4

Table 1.3 Mean length at age for all readers in the North Sea exchange

Age	1_ DNK1	3_ NOR2	4_ NOR3	5_ NOR4	6_ NOR5	8_ GBR2	9_ GBR3	10_ GBR1	11_ IRL1	13_ NLD1	14_ DEU1	15_ FRA1	16_ NOR1	Total
0	9.8	9.8	9.8	9.8	9.8	9.8	9.8	9.8	11	22.3	-	9.8	-	10.7
1	16.4	18	16.4	16.4	16.4	18.3	16.4	16.3	18.8	9.8	9.8	17.7	16.2	16.5
2	23.8	19.6	23.3	23.1	23.3	20.8	23.3	23.2	19.6	15.5	17.6	21	19.5	21
3	26.4	26.4	26.5	26.2	26.6	26.4	26.5	24.7	26.5	24.7	23.1	26.5	24.8	25.8
4	29.1	29.8	29.8	27.7	28.1	29	29.1	27.6	27.5	27.2	26.5	29.1	27.8	28.1
5	29.7	28.9	27.7	29.2	27.7	28.9	28.4	29.3	28.9	29.4	29.7	28.2	26.1	28.5
6	28.6	28.6	29.4	29.8	29.4	31.4	29.6	29.8	30.1	29.8	28.7	29.4	28.9	29.5
7	31.7	31.6	30.8	30.8	30.9	31.2	30.9	32	31.4	28.5	28.6	30.9	30.7	30.6
8	31.2	31.2	31.2	31	-	-	33.5	27.5	31.6	31.2	30.9	-	29.9	30.9
9	30.9	30.5	32	33.5	32.4	31.7	30.5	-	-	33.5	33.5	31.7	30.7	31.7
10	-	-	31.2	-	30.5	-	31.2	32.5	-	-	-	-	-	31.4
11	-	-	-	-	-	-	-	-	-	-	30.5	-	-	30.5
12	-	-	-	-	-	-	-	31.2	-	-	-	-	-	31.2
13	-	-	-	-	-	-	-	-	-	-	31.2	-	-	31.2
Weight ed Mean	23.9	23.9	23.9	23.9	23.7	23.8	23.9	23.9	23.9	24.1	23.9	23.9	23.9	23.9

Figure 1.1 Age bias plots for all readers in the North Sea exchange. The diagonal line represents the modal age and the vertical bars are the mean age +/- 2 standard deviations.

Annex 2 Celtic Sea

	Longth	Conturo	1_ DNK	3_ NOR	4_ NOR	5_ NOB	6_ NOR	8_ CPP	9_ CPP	10_ CPP	11_ IBI	13_	14_	15_ EDA	16_	Modal	& Agroo	
Image	(SC)	date	1	2	3	4	5	2 2	3	1 1	1	1	1	гка 1	1	Age	ment	cv
Herr_VII_01jpg	26	28/09/2011	5	5	5	5	5	5	5	5	5	6	6	5	5	5	85	7
Herr_VII_02jpg	26.5	28/09/2011	6	5	6	6	6	5	6	5	5	7	7	6	6	6	54	12
Herr_VII_03jpg	25	28/09/2011	3	3	3	3	3	3	3	4	3	5	4	3	4	3	69	19
Herr_VII_04jpg	27	28/09/2011	5	5	5	5	5	5	5	5	4	6	6	5	5	5	77	10
Herr_VII_05jpg	29	28/09/2011	9	10	10	10	10	10	10	7	8	8	12	10	11	10	54	14
Herr_VII_06jpg	25.5	28/09/2011	3	3	3	3	3	3	3	4	3	4	4	3	5	3	69	19
Herr_VII_07jpg	27.5	28/09/2011	7	7	7	7	7	7	7	7	6	7	8	7	7	7	85	6
Herr_VII_08jpg	24	28/09/2011	3	3	3	3	3	3	3	3	3	4	4	3	4	3	77	14
Herr_VII_09jpg	25	28/09/2011	3	3	3	3	3	3	3	3	3	4	4	3	4	3	77	14
Herr_VII_10jpg	24	28/09/2011	3	3	3	3	3	3	3	3	3	4	4	3	3	3	85	12
Herr_VII_11jpg	28	19/10/2011	6	5	5	5	5	5	6	5	5	6	7	5	6	5	62	12
Herr_VII_12jpg	23	19/10/2011	1	1	1	1	1	1	1	2	1	2	2	1	1	1	77	36
Herr_VII_13jpg	23.5	19/10/2011	2	2	2	2	2	2	2	2	2	3	3	2	2	2	85	17
Herr_VII_14jpg	25	19/10/2011	2	2	2	2	2	2	2	2	2	3	3	2	2	2	85	17
Herr_VII_15jpg	26	19/10/2011	3	3	3	3	3	3	3	3	3	4	5	3	4	3	77	19
Herr_VII_16jpg	24	19/10/2011	2	2	2	2	2	2	2	3	2	3	3	2	2	2	77	20
Herr_VII_17jpg	29	19/10/2011	7	6	7	7	6	7	7	6	6	6	8	6	7	6	46	10
Herr_VII_18jpg	26	19/10/2011	3	3	3	3	3	3	3	4	3	5	4	3	3	3	77	19
Herr_VII_19jpg	28	19/10/2011	4	4	4	4	4	4	4	5	4	5	5	4	4	4	77	10

Table 2.1 Fish data and all age readings for all fish in the Celtic Sea exchange

				1				1			1		1		1	1		
Herr_VII_20jpg	22	28/11/2011	2	2	2	2	2	2	2	1	2	4	3	2	2	2	77	32
Herr_VII_21jpg	28	02/12/2013	7	6	7	7	6	7	6	5	6	5	7	6	6	6	46	12
Herr_VII_22jpg	27.5	10/12/2012	6	6	6	6	6	6	6	5	6	6	7	6	6	6	85	7
Herr_VII_23jpg	25.5	10/12/2012	4	4	4	4	4	4	4	3	4	6	5	4	4	4	77	17
Herr_VII_24jpg	22	10/12/2012	2	2	2	2	2	2	2	2	2	4	3	2	2	2	85	27
Herr_VII_25jpg	25	10/12/2012	2	3	2	2	2	2	2	3	2	4	3	2	2	2	69	27
Herr_VII_26jpg	26	10/12/2012	6	5	6	6	6	6	6	4	5	6	7	6	6	6	69	13
Herr_VII_27jpg	22	24/10/2012	2	NA	2	2	2	2	2	3	2	4	3	2	2	2	75	28
Herr_VII_28jpg	22	24/10/2012	2	2	2	2	2	2	2	1	2	4	3	2	2	2	77	32
Herr_VII_29jpg	20.5	24/10/2012	1	1	1	1	1	1	1	1	1	3	2	1	1	1	85	49
Herr_VII_30jpg	22.5	24/10/2012	2	2	2	2	2	2	2	1	2	4	3	2	2	2	77	32
Herr_VII_31jpg	21	24/10/2012	1	1	1	1	1	1	1	1	1	3	2	1	1	1	85	49
Herr_VII_32jpg	19	02/10/2013	1	1	1	1	1	1	1	1	1	3	2	1	1	1	85	49
Herr_VII_33jpg	28	23/10/2013	5	5	5	5	5	5	5	4	5	7	6	5	5	5	77	13
Herr_VII_34jpg	23.5	02/12/2013	3	3	3	3	3	3	3	2	3	5	4	3	3	3	77	22
Herr_VII_35jpg	24	02/12/2013	2	2	2	2	2	2	2	2	2	4	3	2	2	2	85	27
Herr_VII_36jpg	24.5	02/12/2013	3	3	3	3	3	3	3	3	4	5	4	3	4	3	69	19
Herr_VII_37jpg	21.5	02/12/2013	2	2	2	2	2	2	2	1	2	4	3	2	2	2	77	32
Herr_VII_38jpg	25	02/12/2013	4	4	4	4	4	4	4	3	4	6	5	4	4	4	77	17
Herr_VII_39jpg	27.5	02/12/2013	6	6	6	6	6	6	6	5	6	8	7	6	6	6	77	11
Herr_VII_40jpg	26	02/12/2013	4	4	4	4	3	4	4	5	4	5	5	4	4	4	69	13
Herr_VII_41jpg	24.5	10/11/2014	3	3	3	3	3	3	3	3	3	5	4	3	3	3	85	19
Herr_VII_42jpg	27	10/11/2014	8	7	8	6	8	8	8	8	6	9	10	8	7	8	54	14
Herr_VII_43jpg	25.5	10/11/2014	6	6	6	4	6	5	6	5	5	7	8	6	5	6	46	18
Herr_VII_44jpg	27.5	10/11/2014	4	4	4	4	4	4	4	3	4	5	5	4	4	4	77	12

Herr_VII_45jpg	23	10/11/2014	2	2	2	2	2	2	2	1	2	4	3	2	2	2	77	32
Herr_VII_46jpg	25	10/11/2014	4	4	4	4	4	4	4	2	4	6	5	4	4	4	77	21
Herr_VII_47jpg	26.5	10/11/2014	4	4	4	4	4	3	4	4	4	5	5	4	3	4	69	14
Herr_VII_48jpg	27.5	10/11/2014	7	7	7	6	7	7	6	7	6	6	9	7	6	7	54	12
Herr_VII_49jpg	26	10/11/2014	3	3	3	3	3	3	3	3	3	4	4	3	3	3	85	12
Herr_VII_50jpg	24	10/11/2014	3	3	3	3	3	3	3	2	3	5	4	3	3	3	77	22
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Means (CV and																		
PA)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	74	20
Total read	-	-	50	49	50	50	50	50	50	50	50	50	50	50	50		-	
Total NOT read	-	-	0	1	0	0	0	0	0	0	0	0	0	0	0		-	

Table 2.2 Age composition for all readers in the Celtic Sea exchange

Age	1_ DNK 1	3_ NOR 2	4_ NOR 3	5_ NOR 4	6_ NOR 5	8_ GBR 2	9_ GBR 3	10_ GBR 1	11_ IRL 1	13_ NLD 1	14_ DEU 1	15_ FRA 1	16_ NOR 1	Total
1	4	4	4	4	4	4	4	8	4	0	0	4	4	48
2	12	10	12	12	12	12	12	8	12	1	4	12	12	131
3	12	13	12	12	13	13	12	13	11	6	12	12	7	148
4	7	7	7	8	6	6	7	6	9	15	11	7	11	107
5	3	6	4	4	4	6	3	10	6	11	8	4	5	74
6	6	5	5	6	7	3	8	1	7	10	3	7	7	75
7	4	3	4	3	2	4	2	3	0	4	6	2	3	40
8	1	0	1	0	1	1	1	1	1	2	3	1	0	13
9	1	0	0	0	0	0	0	0	0	1	1	0	0	3

10	0	1	1	1	1	1	1	0	0	0	1	1	0	8
11	0	0	0	0	0	0	0	0	0	0	0	0	1	1
12	0	0	0	0	0	0	0	0	0	0	1	0	0	1
All	50	49	50	50	50	50	50	50	50	50	50	50	50	649

Table 2.3 Mean length at age for all readers in the Celtic Sea exchange

Age	1_ DNK1	3_ NOR2	4_ NOR3	5_ NOR4	6_ NOR5	8_ GBR2	9_ GBR3	10_ GBR1	11_ IRL1	13_ NLD1	14_ DEU1	15_ FRA1	16_ NOR1	Total
1	20.9	20.9	20.9	20.9	20.9	20.9	20.9	21.4	20.9	-	-	20.9	20.9	21
2	23	22.9	23	23	23	23	23	23.8	23	23	20.9	23	23	23
3	24.8	24.8	24.8	24.8	24.9	25	24.8	24.8	24.9	22.2	23	24.8	24.9	24.6
4	26.2	26.2	26.2	26.1	26.2	26.2	26.2	26.2	26.1	23.6	24.7	26.2	25.6	25.6
5	27	26.9	27.2	27.2	27.2	26.8	27	27	26.7	25.8	26.2	27.2	26.4	26.7
6	26.8	27.5	26.6	27	27.1	27	27.1	29	27.7	26.6	27	27.1	27.3	27.1
7	28	27.3	28	28.2	27.5	28	28.2	28	-	26.9	27.2	27.5	27.8	27.7
8	27	-	27	-	27	27	27	27	29	28.2	27.3	27	-	27.4
9	29	-	-	-	-	-	-	-	-	27	27.5	-	-	27.8
10	-	29	29	29	29	29	29	-	-	-	27	29	-	28.8
11	-	-	-	-	-	-	-	-	-	-	-	-	29	29
12	-	-	-	-	-	-	-	-	-	-	29	-	-	29
Weight ed														
Mean	25	25.1	25	25	25	25	25	25	25	25	25	25	25	25

Figure 2.1 Age bias plots for all readers in the Celtic Sea exchange. The diagonal line represents the modal age and the vertical bars are the mean age +/- 2 standard deviations.

Annex 3 Irish Sea

			1_	3_	4_	5_	6_	8_	9_	10_	11_	13_	14_	15_	16_		%	
Image	Length (SC)	date	DNK 1	NOR 2	NOR 3	NOR 4	NOR 5	<u>авк</u> 2	GBR 3	GBR 1	IRL 1	NLD 1	DEU 1	FКА 1	NOR 1	Age	Agree ment	cv
Herr_VIIa_01jpg	26.7	01/10/2010	4	4	4	4	4	4	4	4	4	6	5	4	4	4	85	14
Herr_VIIa_02jpg	28.1	01/10/2010	8	6	8	8	8	7	8	7	6	7	9	7	7	7	38	12
Herr_VIIa_03jpg	27.1	01/10/2010	6	5	6	6	6	6	6	7	6	6	7	6	6	6	77	8
Herr_VIIa_04jpg	26.9	01/10/2010	3	3	3	3	3	3	3	4	3	5	4	3	3	3	77	19
Herr_VIIa_05jpg	25.4	01/10/2010	4	4	4	4	4	4	4	4	4	6	5	4	4	4	85	14
Herr_VIIa_06jpg	27.4	01/10/2010	5	5	5	5	5	5	NA	4	5	6	6	5	7	5	67	14
Herr_VIIa_07jpg	16.7	01/09/2011	1	1	1	1	1	1	1	1	1	2	2	1	1	1	85	33
Herr_VIIa_08jpg	24	01/10/2010	2	2	2	2	2	2	2	1	2	3	3	2	2	2	77	24
Herr_VIIa_09jpg	15.5	01/09/2011	1	1	1	1	1	1	1	1	1	2	2	1	1	1	85	33
Herr_VIIa_10jpg	25.3	01/09/2011	4	4	4	4	4	4	4	4	3	4	5	4	4	4	85	10
Herr_VIIa_11jpg	29.2	01/10/2010	6	5	6	7	6	6	6	6	5	6	6	6	8	6	69	12
Herr_VIIa_12jpg	24.5	01/10/2010	4	3	4	4	4	4	4	3	4	5	5	4	4	4	69	14
Herr_VIIa_13jpg	26.6	01/10/2010	4	4	4	4	4	4	4	4	4	5	5	4	4	4	85	9
Herr_VIIa_14jpg	25.5	01/10/2010	4	4	4	4	4	4	4	4	4	5	5	4	4	4	85	9
Herr_VIIa_15jpg	21.8	01/10/2010	2	2	2	2	2	2	2	1	2	3	3	2	2	2	77	24
Herr_VIIa_16jpg	23.3	01/10/2010	2	2	2	2	2	2	2	2	2	3	3	2	2	2	85	17
Herr_VIIa_17jpg	20.5	01/10/2010	1	1	1	1	1	1	1	1	1	2	2	1	1	1	85	33
Herr_VIIa_18jpg	28.5	01/10/2010	5	5	5	5	5	5	5	5	5	6	6	5	6	5	77	8
Herr_VIIa_19jpg	22.6	01/10/2010	2	2	2	2	2	2	2	1	2	3	3	2	1	2	69	29

Table 3.1 Fish data and all age readings for all fish in the Irish Sea exchange

		1	1	1					1				1	1		1		1
Herr_VIIa_20jpg	23.8	01/03/2011	3	4	4	4	4	4	4	3	4	5	4	4	3	4	69	14
Herr_VIIa_21jpg	22	01/10/2010	2	2	2	2	2	3	2	2	2	3	3	2	2	2	77	20
Herr_VIIa_22jpg	24.4	01/03/2011	3	3	3	3	3	3	3	4	3	4	4	3	3	3	77	14
Herr_VIIa_23jpg	23.4	01/10/2010	3	2	2	2	2	2	2	2	2	3	3	2	2	2	77	20
Herr_VIIa_24jpg	24.6	01/03/2011	4	5	5	5	5	4	5	4	5	5	6	5	4	5	62	13
Herr_VIIa_25jpg	23.6	01/03/2011	4	4	4	4	4	4	4	3	4	4	5	4	4	4	85	10
Herr_VIIa_26jpg	22.8	01/03/2011	3	3	3	3	3	3	3	2	3	4	4	3	3	3	77	16
Herr_VIIa_27jpg	22.3	01/03/2011	3	3	3	3	3	3	3	2	3	4	4	3	3	3	77	16
Herr_VIIa_28jpg	23.7	01/03/2011	4	4	4	4	4	4	4	3	4	5	5	4	4	4	77	12
Herr_VIIa_29jpg	19.5	01/03/2011	2	2	2	2	2	2	2	2	2	3	3	2	2	2	85	17
Herr_VIIa_30jpg	20.9	01/03/2011	2	2	2	2	2	2	2	2	2	3	3	2	2	2	85	17
Herr_VIIa_31jpg	21.1	01/03/2011	3	3	3	3	3	3	3	2	3	4	4	3	3	3	77	16
Herr_VIIa_32jpg	22	01/03/2011	3	3	3	3	3	3	3	2	3	4	4	3	3	3	77	16
Herr_VIIa_33jpg	22.2	01/03/2011	3	3	3	3	3	3	3	2	3	4	4	3	3	3	77	16
Herr_VIIa_34jpg	27.3	01/09/2011	4	3	4	4	4	5	4	6	4	5	5	4	4	4	62	17
Herr_VIIa_35jpg	26.9	01/09/2011	8	7	8	8	8	8	8	7	6	8	9	8	9	8	62	10
Herr_VIIa_36jpg	25.6	01/09/2006	4	4	4	4	4	4	4	5	4	5	5	4	4	4	77	10
Herr_VIIa_37jpg	25.8	01/09/2006	4	4	4	4	4	4	4	4	4	5	5	4	4	4	85	9
Herr_VIIa_38jpg	23.7	01/09/2011	2	2	2	2	2	2	2	2	2	3	3	2	2	2	85	17
Herr_VIIa_39jpg	27.6	01/09/2011	6	6	6	6	6	6	6	5	5	7	7	6	6	6	69	10
Herr_VIIa_40jpg	26.2	01/09/2011	6	5	6	6	6	6	6	5	6	7	7	6	6	6	69	10
Herr_VIIa_41jpg	28	01/09/2011	6	5	6	6	6	6	6	6	5	7	7	6	5	6	62	11
Herr_VIIa_42jpg	25.1	01/09/2006	5	4	5	5	5	5	5	4	5	6	6	5	5	5	69	12
Herr_VIIa_43jpg	24.8	01/09/2006	3	3	3	3	3	3	3	3	3	4	4	3	3	3	85	12
Herr_VIIa_44jpg	24.1	01/09/2006	4	4	4	4	4	4	4	3	4	5	5	4	4	4	77	12

Herr_VIIa_45jpg	22.9	01/09/2006	2	2	2	2	2	2	2	2	2	3	3	2	2	2	85	17
Herr_VIIa_46jpg	23.7	01/09/2006	3	3	3	3	3	3	3	3	3	4	4	3	3	3	85	12
Herr_VIIa_47jpg	21	01/09/2006	1	1	1	1	1	1	1	2	1	2	NA	1	1	1	83	33
Herr_VIIa_48jpg	22	01/09/2006	2	2	2	2	2	2	2	2	2	3	3	2	2	2	85	17
Herr_VIIa_49jpg	17.1	01/09/2011	1	1	1	1	1	1	1	1	1	2	2	1	1	1	85	33
Herr_VIIa_50jpg	18.6	01/09/2011	1	1	1	1	1	1	1	1	1	2	2	1	1	1	85	33
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Means (CV and PA)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	77.02	17
Total read	-	-	50	50	50	50	50	50	49	50	50	50	49	50	50		-	
Total NOT read	-	-	0	0	0	0	0	0	1	0	0	0	1	0	0		-	

Table 3.2 Age composition for all readers in the Irish Sea exchange

	1_ DNK	3_ NOR	4_ NOR	5_ NOR	6_ NOR	8_ GBR	9_ GBR	10_ GBR	11_ IRL	13_ NLD	14_ DEU	15_ FRA	16_ NOR	
Age	1	2	3	4	5	2	3	1	1	1	1	1	1	Total
1	6	6	6	6	6	6	6	8	6	0	0	6	7	69
2	10	11	11	11	11	10	11	14	11	6	5	11	10	132
3	11	11	9	9	9	10	9	7	10	11	11	9	10	126
4	13	12	13	13	13	13	13	11	12	10	10	13	13	159
5	3	7	4	4	4	4	3	4	7	11	12	4	2	69
6	5	2	5	4	5	5	5	3	4	7	5	5	4	59
7	0	1	0	1	0	1	0	3	0	4	4	1	2	17
8	2	0	2	2	2	1	2	0	0	1	0	1	1	14

9	0	0	0	0	0	0	0	0	0	0	2	0	1	3
All	50	50	50	50	50	50	49	50	50	50	49	50	50	648

Table 3.3 Mean length at age for all readers in the Irish Sea exchange

Age	1_ DNK1	3_ NOR2	4_ NOR3	5_ NOR4	6_ NOR5	8_ GBR2	9_ GBR3	10_ GBR1	11_ IRL1	13_ NLD1	14_ DEU1	15_ FRA1	16_ NOR1	Total
1	18.2	18.2	18.2	18.2	18.2	18.2	18.2	19.6	18.2	-	-	18.2	18.9	18.5
2	22.3	22.4	22.4	22.4	22.4	22.4	22.4	22.1	22.4	18.2	17.7	22.4	22.4	22
3	23.4	23.8	23.4	23.4	23.4	23.2	23.4	24	23.6	22.4	22.4	23.4	23.4	23.3
4	25.3	25.1	25.2	25.2	25.2	25	25.2	25.8	25.2	23.2	23.4	25.2	25.3	25
5	27	27.3	26.4	26.4	26.4	27.1	26.1	27	27.2	25.3	25.3	26.4	26.6	26.3
6	27.6	27.9	27.6	27.2	27.6	27.6	27.6	28.2	27.1	27.1	27	27.6	27.4	27.5
7	-	26.9	-	29.2	-	28.1	-	27.4	-	27.5	27.2	28.1	27.8	27.6
8	27.5	-	27.5	27.5	27.5	26.9	27.5	-	-	26.9	-	26.9	29.2	27.5
9	-	-	-	-	-	-	-	-	-	-	27.5	-	26.9	27.3
Weight ed														
Mean	23.9	23.8	23.8	23.8	23.8	23.8	23.8	23.9	23.9	23.9	23.9	23.8	23.9	23.9

Figure 3.1 Age bias plots for all readers in the Irish Sea exchange. The diagonal line represents the modal age and the vertical bars are the mean age +/- 2 standard deviations.

Annex 4 VIa (N and S)

	Longth	Canture	1_ DNK	3_ NOR	4_ NOR	5_ NOR	6_ NOR	8_ GBR	9_ GBR	10_ GBR	11_ IRI	13_ NI D	14_ DEU	15_ ERA	16_ NOR	Modal	% Agree	
Image	(SC)	date	1	2	3	4	5	2	3	1	1	1	1	1	1	Age	ment	cv
Herr_VIa_01jpg	30	27/08/2014	6	6	6	6	6	6	6	5	5	7	7	6	6	6	69	10
Herr_VIa_02jpg	26.5	27/08/2014	3	3	3	3	3	3	3	4	3	4	4	3	3	3	77	14
Herr_VIa_03jpg	30.5	27/08/2014	8	8	10	8	10	9	8	7	8	7	9	9	8	8	46	11
Herr_VIa_04jpg	32	27/08/2014	6	6	5	6	6	6	6	6	5	6	7	6	5	6	69	9
Herr_VIa_05jpg	32.5	27/08/2014	8	8	8	8	10	9	8	8	8	7	9	8	8	8	69	9
Herr_VIa_06jpg	28.5	27/08/2014	5	5	5	5	5	6	5	5	5	5	6	5	6	5	77	8
Herr_VIa_07jpg	27.5	01/09/2014	3	3	3	3	3	3	3	4	3	4	4	3	3	3	77	14
Herr_VIa_08jpg	26	01/09/2014	4	4	3	4	4	4	4	4	4	5	5	4	4	4	77	12
Herr_VIa_09jpg	31.5	01/09/2014	7	6	7	7	7	7	6	5	6	8	8	6	7	7	46	13
Herr_VIa_10jpg	29.5	01/09/2014	4	4	4	5	4	4	4	5	5	5	5	4	5	4	54	12
Herr_Vla_11jpg	31	01/09/2014	5	5	5	5	5	5	5	5	5	5	6	5	5	5	92	5
Herr_VIa_12jpg	24	19/11/2014	2	2	2	2	2	2	2	2	2	3	3	2	2	2	85	17
Herr_Vla_13jpg	13.5	19/11/2014	0	0	0	0	0	0	0	0	0	2	1	0	1	0	77	-
Herr_VIa_14jpg	29.5	19/11/2014	5	4	5	5	5	4	5	4	5	7	6	5	5	5	62	16
Herr_Vla_15jpg	30	19/11/2014	4	4	4	4	4	4	4	7	4	5	5	4	5	4	69	20
Herr_VIa_16jpg	21	29/11/2014	1	1	1	1	1	1	1	1	2	3	2	1	1	1	77	48
Herr_VIa_17jpg	27	29/11/2014	3	3	4	3	3	3	3	5	3	4	NA	3	3	3	75	20
Herr_VIa_18jpg	29	19/11/2014	5	5	5	5	5	4	5	4	5	5	6	5	5	5	77	10
Herr_VIa_19jpg	34.5	22/02/2015	7	9	10	8	9	7	8	7	6	8	7	7	7	7	46	14

Table 4.1 Fish data and all age readings for all fish in the VIa (N and S) exchange

Herr_VIa_20jpg	28	22/02/2015	6	6	6	6	5	6	6	5	6	4	8	6	5	6	62	16
Herr_VIa_21jpg	30.5	25/02/2015	4	7	4	4	4	4	4	7	4	5	6	4	4	4	69	25
Herr_VIa_22jpg	19.5	25/02/2015	2	2	2	1	2	2	2	2	2	3	3	2	1	2	69	29
Herr_VIa_23jpg	13	25/02/2015	1	1	1	2	1	1	1	1	1	2	2	1	1	1	77	36
Herr_VIa_24jpg	17	25/02/2015	1	1	1	2	1	1	2	2	1	2	2	1	3	1	54	43
Herr_VIa_25jpg	23	07/03/2015	3	3	3	3	3	3	3	3	3	4	4	3	2	3	77	16
Herr_VIa_26jpg	27.5	24/11/2014	3	3	3	3	3	3	3	4	4	4	4	3	3	3	69	15
Herr_VIa_27jpg	22.5	24/11/2014	2	2	2	3	2	2	2	2	2	3	3	2	3	2	69	21
Herr_VIa_28jpg	29.5	24/11/2014	5	5	5	5	5	4	5	4	5	5	6	5	5	5	77	10
Herr_VIa_29jpg	28.5	24/11/2014	5	5	6	5	5	4	5	4	4	5	6	5	6	5	54	14
Herr_VIa_30jpg	24.5	24/11/2014	2	2	2	2	2	2	2	2	2	3	3	2	3	2	77	20
Herr_VIa_31jpg	28	24/11/2014	4	4	4	5	5	4	5	4	4	4	6	4	4	4	69	15
Herr_VIa_32jpg	26	28/02/2015	4	4	4	3	4	4	4	4	3	4	5	4	3	4	69	14
Herr_VIa_33jpg	25	24/11/2014	3	3	3	3	3	4	3	3	3	4	4	3	3	3	77	14
Herr_VIa_34jpg	20.5	27/11/2014	1	1	1	1	1	1	1	1	1	3	2	1	1	1	85	49
Herr_VIa_35jpg	29	27/11/2014	5	5	6	5	6	4	5	5	5	6	7	5	5	5	62	14
Herr_VIa_36jpg	19.5	25/02/2015	2	2	2	1	2	2	2	2	2	3	3	2	1	2	69	29
Herr_VIa_37jpg	14.5	25/02/2015	1	1	1	0	1	1	1	1	1	2	2	1	0	1	69	58
Herr_VIa_38jpg	18	28/02/2015	1	1	1	0	1	1	1	1	1	2	2	1	0	1	69	58
Herr_VIa_39jpg	28	28/02/2015	5	5	5	4	5	5	5	4	5	4	6	5	4	5	62	13
Herr_VIa_40jpg	27	28/02/2015	4	4	4	3	4	4	4	4	4	5	5	4	3	4	69	14
Herr_VIa_41jpg	21.5	28/02/2015	2	2	2	1	2	2	2	2	4	3	3	2	1	2	62	37
Herr_VIa_42jpg	30.5	28/02/2015	6	5	6	5	6	6	6	5	5	6	7	5	5	5	46	12
Herr_VIa_43jpg	23.5	28/02/2015	2	2	2	1	2	2	2	2	2	3	3	2	1	2	69	29
Herr_VIa_44jpg	31	28/02/2015	6	6	6	5	6	6	6	5	6	7	7	6	5	6	62	11

Herr_VIa_45jpg	32	28/02/2015	6	6	6	5	6	5	6	8	6	7	7	6	5	6	54	14
Herr_VIa_46jpg	33.5	28/02/2015	8	9	9	7	8	8	8	8	9	7	9	8	6	8	46	11
Herr_VIa_47jpg	28.5	28/02/2015	4	4	3	3	4	4	4	5	3	5	5	4	3	4	46	19
Herr_VIa_48jpg	33	28/02/2015	5	6	6	4	5	6	6	4	5	6	6	5	4	6	46	16
Herr_VIa_49jpg	22	28/02/2015	6	6	6	5	5	6	6	4	6	6	7	6	5	6	62	13
Herr_VIa_50jpg	26	28/02/2015	3	3	3	NA	3	3	3	4	3	0	4	3	3	3	75	34
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Means (CV and																		
PA)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	67	20
Total read	-	-	50	50	50	49	50	50	50	50	50	50	49	50	50		-	
Total NOT read	-	-	0	0	0	1	0	0	0	0	0	0	1	0	0		-	

Table 4.2 Age composition for all readers in the VIa (N and S) exchange

Age	1_ DNK 1	3_ NOR 2	4_ NOR 3	5_ NOR 4	6_ NOR 5	8_ GBR 2	9_ GBR 3	10_ GBR 1	11_ IRL 1	13_ NLD 1	14_ DEU 1	15_ FRA 1	16_ NOR 1	Total
0	1	1	1	3	1	1	1	1	1	1	0	1	2	15
1	6	6	6	6	6	6	5	5	5	0	1	6	8	66
2	7	7	7	4	7	7	8	8	7	5	6	7	2	82
3	7	7	8	10	7	6	7	2	8	9	7	7	12	97
4	8	8	7	5	7	14	7	15	8	10	6	8	5	108
5	9	8	7	13	11	3	9	11	12	11	6	10	13	123
6	7	8	9	3	6	8	9	1	6	5	10	7	4	83
7	2	1	1	2	1	2	0	4	0	7	8	1	2	31
8	3	2	1	3	1	1	4	3	2	2	2	2	2	28

9	0	2	1	0	1	2	0	0	1	0	3	1	0	11
10	0	0	2	0	2	0	0	0	0	0	0	0	0	4
All	50	50	50	49	50	50	50	50	50	50	49	50	50	648

Table 4.3 Mean length at age for all readers in the VIa (N and S) exchange

	1_	3_	4_	5_	6_	8_	9_	10_	11_	13_	14_	15_	16_	
Age	DNK1	NOR2	NOR3	NOR4	NOR5	GBR2	GBR3	GBR1	IRL1	NLD1	DEU1	FRA1	NOR1	Total
0	13.5	13.5	13.5	15.3	13.5	13.5	13.5	13.5	13.5	26	-	13.5	16.2	15.1
1	17.3	17.3	17.3	20.9	17.3	17.3	17.4	17.4	16.6	-	13.5	17.3	19	17.8
2	22.1	22.1	22.1	19.6	22.1	22.1	21.5	21.5	22.1	15.2	17.3	22.1	23.5	21.1
3	26.1	26.1	26.2	26.1	26.1	26.2	26.1	24	26.2	21.8	22.1	26.1	25.4	25.3
4	28.2	28.1	28.3	29.5	28.2	28.3	28.2	27.6	27.4	26.6	25.9	28.2	29.1	27.9
5	29.6	29.2	29.6	29.1	28.6	30.3	29	29.5	30	28.9	27.8	29.6	29.5	29.3
6	29.4	29.9	29.3	30	30.8	29.4	30	32	29.8	29.3	29.6	29.5	30.1	29.7
7	33	30.5	31.5	32.5	31.5	33	-	31.4	-	31.3	30.1	34.5	33	31.5
8	32.2	31.5	32.5	32.5	33.5	33.5	32.8	32.7	31.5	33	29.8	33	31.5	32.2
9	-	34	33.5	-	34.5	31.5	-	-	33.5	-	32.2	30.5	-	32.7
10	-	-	32.5	-	31.5	-	-	-	-	-	-	-	-	32
Weight														
ed Mean	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3

Figure 4.1 Age bias plots for all readers in the VIa (N and S) exchange. The diagonal line represents the modal age and the vertical bars are the mean age +/- 2 standard deviations.